NOTES
ON
DIGITAL ELECTRONICS

B.Tech. Il YEAR - Il Sem.
(2022-23)

YOour roo

MALLADI SUNDER RAO
ASSISTANT PROFESSOR

DEPARTMENT OF ELECTRICAL&ELECTRONICS ENGINEERING
NARSIMHA REDDY ENGINEERING COLLEGE
(UGC AUTONOMOUS)

Approved by AICTE, New Delhi & Affiliated to INTUH, Hyderabad
Accredited by NAAC with A Grade, Accredited by NBA

Maisammguda (V), Dhulapally (P), Medchal (M) Secunderabad-14

DIGITAL ELECTRONICS
SYLLABUS

UNIT - |
Fundamentals of Digital Systems and Logic Families: Digital signals, digital circuits, AND, OR,
NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number
systems binary, signed binary, octal hexadecimal number, binary codes, characteristics of digital ICs,
digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state
logic.

UNIT - 11
Combinational Digital Circuits: Standard representation for logic functions, K-map representation,
and simplification of logic functions using K-map, minimization of logical functions. care
conditions, ultiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look
ahead adder, serial ladder, ALU, elementary ALU design, popular MSI chips, digital comparator,
parity hecker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-
M method of function realization.

UNIT - 11
Sequential Circuits and Systems: A 1-bit memory, the circuit properties of Bi-stable latch, the
clocked SR flip flop, J, K, T and D types flip-flops, applications of flip-flops, shift registers,
applications of shift egisters, serial to parallel converter, parallel to serial converter, ring counter,
sequence generator, ripple (Asynchronous) counters, synchronous counters, asynchronous sequential
counters, applications of counters.

UNIT IV
A/D and D/A Converters: Digital to analog converters: weighted resistor/converter,R-2R Ladder

D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold
circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter,
successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D
converter using voltage to frequency and voltage to time conversion, specifications of A/D
converters, example of A/D converter ICs.

UNIT -V
Semiconductor Memories and Programmable Logic Devices: Memory organization and
operation, expanding memory size, classification and characteristics of memories, sequential
memory, read only memory (ROM), read and write memory (RAM), content addressable memory
(CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD,
Programmable logic array, Programmable array logic, complex Programmable logic devices
(CPLDS), Field Programmable Gate Array (FPGA).

UNIT -1

Fundamentals of Digital Systems and Logic Families:

Introduction about digital system

Philosophy of number systems

Complement representation of negative numbers

Binary arithmetic

Binary codes

Error detecting & error correcting codes

Hamming codes

INTRODUCTION ABOUT DIGITAL SYSTEM

A Digital system is an interconnection of digital modules and it is a system that manipulates
discrete elements of information that is represented internally in the binary form.

Now a day’s digital systems are used in wide variety of industrial and consumer products such as
automated industrial machinery, pocket calculators, microprocessors, digital computers, digital watches,
TV games and signal processing and so on.

Characteristics of Digital systems

Digital systems manipulate discrete elements of information.

Discrete elements are nothing but the digits such as 10 decimal digits or 26 letters of alphabets and
SO on.

Digital systems use physical quantities called signals to represent discrete elements.

In digital systems, the signals have two discrete values and are therefore said to be binary.
Assignal in digital system represents one binary digit called a bit. The bit has a value either 0 or 1.

Analog systems vs Digital systems

Analog system process information that varies continuously i.e; they process time varying signals
that can take on any values across a continuous range of voltage, current or any physical parameter.

Digital systems use digital circuits that can process digital signals which can take either 0 or 1 for
binary system.

Intensity

Intensity {

Abrupt amplitude variations

Advantages of Digital system over Analog system

1. Ease of programmability

The digital systems can be used for different applications by simply changing the program without
additional changes in hardware.

2. Reduction in cost of hardware

The cost of hardware gets reduced by use of digital components and this has been possible due to
advances in IC technology. With I1Cs the number of components that can be placed in a given area of
Silicon are increased which helps in cost reduction.

3. High speed

Digital processing of data ensures high speed of operation which is possible due to advances in
Digital Signal Processing.

4. High Reliability
Digital systems are highly reliable one of the reasons for that is use of error correction codes.

5. Design is easy

The design of digital systems which require use of Boolean algebra and other digital techniques is
easier compared to analog designing.

6. Result can be reproduced easily

Since the output of digital systems unlike analog systems is independent of temperature, noise,
humidity and other characteristics of components the reproducibility of results is higher in digital systems
than in analog systems.

Disadvantages of Digital Systems

Use more energy than analog circuits to accomplish the same tasks, thus producing more heat as
well.

Digital circuits are often fragile, in that if a single piece of digital data is lost or misinterpreted the
meaning of large blocks of related data can completely change.

Digital computer manipulates discrete elements of information by means of a binary code.
Quantization error during analog signal sampling.

NUMBER SYSTEM

Number system is a basis for counting varies items. Modern computers communicate and operate
with binary numbers which use only the digits 0 &1. Basic number system used by humans is Decimal
number system.

For Ex: Let us consider decimal number 18. This number is represented in binary as 10010.

We observe that binary number system take more digits to represent the decimal number. For large
numbers we have to deal with very large binary strings. So this fact gave rise to three new number systems.

i) Octal number systems
i) Hexa Decimal number system
iii) Binary Coded Decimal number(BCD) system
To define any number system we have to specify
Base of the number system such as 2,8,10 or 16.
The base decides the total number of digits available in that number system.

First digit in the number system is always zero and last digit in the number system is always
base-1.

Binary number system:

The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. In
binary system weight is expressed as power of 2.

. l:"\.d Ill])] el Figure 2 : Binary position values as power of 2
- ; 2 " > o~ 2
: 7

The left most bit, which has the greatest weight is called the Most Significant Bit (MSB). And the
right most bit which has the least weight is called Least Significant Bit (LSB).

ForEx: 1001.01=[(1)x 23]+ [(0)x22]+[(0)x2]+ [(1)x2°1+[(0)x21]+[
(1)x2%]
1001.01, =[1x8]+[0x4]+[0x2]+[1x1]+[0x05]+[1%x0.25]
1001.012 =9.2519
Decimal Number system
The decimal system has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10.
Octal Number System
Digital systems operate only on binary numbers. Since binary numbers are often very long, two

shorthand notations, octal and hexadecimal, are used for representing large binary numbers. Octal systems
use a base or radix of 8. It uses first eight digits of decimal number system. Thus it has digits fromO0 to 7.

Hexa Decimal Number System

The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to

9 are used as the first ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which
represent the values 10, 11,12,13,14 and 15 respectively.

Decima | Binar | Octal Hexadeci
I y
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

N OO~ WP O

[HEN
o

OO N OO DWW NP, O

[EEN
[EEN

[EEN
o
[EEN
N

[EEN
[EEN
[EEN
w

[EEN
N
[EEN
IS

[EEN
w
[EEN
(6]

[EEN
SN
[EEN
(op}

TIrnDOw:Dcooo\lc»m.booNl—\og

[EEN
(6]
[EEN
\‘

Number Base conversions

The human beings use decimal number system while computer uses binary number system.
Therefore it is necessary to convert decimal number system into its equivalent binary.

) Binary to octal number conversion
i) Binary to hexa decimal number conversion

The binary number: 001010 011 000 100 101 110 111

—— e ——— —— ——— —— —— ——

The octal humber: 1 2 3 0 4 &5 6 7

The binary number: 0001 0010 0100 1000 1001 1010 1101 1111

The hexadecimal number: 1 2 5 8 9 A D F

iii) Octal to binary Conversion

Each octal number converts to 3 binary digits

Code To convert 653, to binary, just

0 - 000) .
1 - 001 substitute code:

2-010 6 5 3
3-011

4-100 -
5-101 110 101 011
6-110

7449

iv) Hexa to binary conversion

4 F D 7

V) o A cimartdhdekion 1101 0111

Ex: convert 4057.06g to octal

=4x83+0x8°+5x81+7x8%°+0x8 1 +6x82

=2048+0+40+7+0+0.0937

=2095.093710

Vi) Decimal to Octal Conversion

Ex: convert 378.9310 to octal

37810 to octal: Successive division:

8| 378
|

8 |47 -
_

85 -

[
0 --—-

=572g

0.9310 to octal :
0.93x8=7.44
0.44x8=3.52
0.53x8=4.16
0.16x8=1.28

=0.7341s
378.9310=572.7341s

Hexadecimal to Decimal Conversion
Ex: 5C716 to decimal

=(5x16%)+(C x16%)+ (7 x16°)

=1280+192+7

214710
Decimal to Hexadecimal Conversion

Ex: 2598.67510

16 p598

16 162 -6
10 -2

= A26 @)

0.67510=0.675x16 -- 10.8

=0.800x16 -- 12.8 |
=0.800x16 -- 12.8
=0.800x16 -- 12.8
=0.ACCCis

2598.67510 = A26.ACCCis

iX) Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary & then the binary no. to
hexadecimal.

Ex: 756.603g

7 5 6
111 101 110
0001 1110 1110

1 E E

X) Hexadecimal to octal conversion:

First convert the given hexadecimal no. to binary & then the binary no. to octal.

Ex: BO9F.AE16

B

3

=5637.534

Complements:

In digital computers to simplify the subtraction operation & for logical manipulation complements
are used. There are two types of complements used in each radix system.

i) The radix complement or r’s complement
i) The diminished radix complement or (r-1)’s complement

Representation of signed no.s binary arithmetic in computers:

e Two ways of rep signed no.s
1. Sign Magnitude form
2. Complemented form
e Two complimented forms
1. 1‘scompliment form
2. 2‘scompliment form
Advantage of performing subtraction by the compliment method is reduction in the hardware.(
instead of addition & subtraction only adding ckt‘s are needed.)
i.e, subtraction is also performed by adders only.

Instead of subtracting one no. from other the compliment of the subtrahend is added to
minuend. In sign magnitude form, an additional bit called the sign bit is placed in front of the no.
If the sign bit is 0, the no. is +ve, Ifit isa 1, the no is _ve.

Ex:

[0 [1]oJ1fofo [1]

!
Sign bit =+41 magnitude

.
(1 1 Jo J1]ofo ji

-41
Note: manipulation is necessary to add a +ve no to a —ve no

Representation of signed no.s using 2’s or 1°’s complement method:
If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in
front of the MSB.I f the no is ve , the magnitude is rep in its 2°s or 1‘s compliment form &a
sign bit 1 is placed in front of the MSB.

Ex:

Given no.

Sign mag form

2‘scomp form

1°scomp form

01101

+13

+13

+13

010111

+23

+23

10111

-7

7

-8

1101010

-42

-22

-21

Special case in 2°s comp representation:

Whenever a signed no. has a 1 in the sign bit & all 0°s for the magnitude bits, the decimal
equivalent is -2" , where n is the no of bits in the magnitude .
Ex: 1000= -8 & 10000=-16

Characteristics of 2’s compliment no.s:
Properties:

There is one unique zero

2. 2‘scompofQisO

3. The leftmost bit can‘t be used to express a quantity . it isa 0 no. is +ve.

4. For an n-bit word which includes the sign bit there are (2"-1) +ve integers,
2" _ve integers & one 0 , for atotal of 2" uniquestates.
Significant information is containd in the 1°s of the +ve no.s & 0°s of the _ve
no.s

A _ve no. may be converted into a +ve no. by finding its 2‘s comp.

Signed binary numbers:

Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form
+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0011 0011 0011
0000 0000 0000

1111
1110
1101
1100
1011
1010
1001
1000

Methods of obtaining 2’s comp of a no:

e In3ways

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1°s & 1°s to 0°s) &
then adding 1.

2. Bysubtracting the given n bit no N from 2"

3. Starting at the LSB , copying down each bit upto & including the first 1 bit
encountered , and complimenting the remaining bits.
Ex: Express -45 in 8 bit 2°s comp form

+45 in 8 bit formis 00101101

I method:

1‘s comp of 00101101 & the add 1
00101101
11010010

11010011 is2°s comp form
Il method:

Subtract the given no. N from 2"

2" =100000000
Subtract 45=-00101101
+1

11010011 is2‘scomp

I11 method:
Original no: 00101101

Copyup to First 1 bit 1
Compliment remaining : 1101001

11010011

| method
01001001.1100
10110110.0011
+1

10110110.0100 is 2‘s

Il method:
28 = 100000000.0000
Sub 73.75=-01001001.1100

10110110.0100 is 2s comp
11 method :

Orginalno : 01001001.1100
Copy up to 1°st bit 100
Comp the remaining bits: 10110110.0

10110110.0100

2’s compliment Arithmetic:

e The 2‘s comp system is used to rep —ve no.s using modulus arithmetic . The word length
of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no . the result will be
only of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus
arithmetic.

Ex:1100+1111=1011
In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there
is a carry out , ignore it , look at the sign bit 1,e, MSB of the sum term .1f the MSB is a
0, the result is positive.& it is in true binary form. If the MSB is a * (carry in or no carry
at all) the result is negative.& is in its 2°s comp form. Take its 2°s comp to find its
magnitude in binary.

:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic:

+14 =00001110
-14 =11110010 2‘scomp

+46 =00101110
-14 =+11110010 2‘s comp form of -14

-32 (21)00100000 ignore carry

form. So the result is +00100000=+32.

EX: Add -75to +26 using 8 bit 2‘s comp arithmetic

+75 =01001011
-75 =10110101 2‘scomp

+26 =00011010
75 ~+10110101 2‘s comp form of -75

-49 11001111 No carry

No carry, MSB isa 1, result is_ve & is in 2°s comp. The magnitude is 2‘s comp of
11001111. i.e, 00110001 = 49. so result is -49

Ex: add -45.75 to +87.5 using 12 bit arithmetic

+87.5=01010111.1000
-45.75=+11010010.0100

-41.75 (1)00101001.1100 ignore carry
MSB is 0O, result is +ve. =+41.75

1’s compliment of n number:
+ It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a

no, is subtracting each bit of the no. form 1.This complemented value rep the —
ve of the original no. One of the difficulties of using 1‘s comp is its rep o f
zero. Both 00000000 & its 1°s comp 11111111 rep zero.

» The 00000000 called +ve zero& 11111111 called —ve zero.

Ex: -99 &-77.25in 8 bit 1°s comp

+99 01100011
-99 10011100

+77.25= 01001101.0100
-77.25 = 10110010.1011

1’s compliment arithmetic:
In 1°s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If there is a

carryout , bring the carry around & add it to the LSB called the end around carry. Look at the
sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB isa 1 (carry or no
carry), the result is —ve & is in its is comp form .Take its 1‘s comp to get the magnitude inn

binary.

Ex: Subtract 14 from25 using 8 bit 1°'s ~ EX: ADD -25to +14

00011001 +14 =00001110
11110001 -25 =+11100110

(1)00001010 -11 11110100

No carry MSB =1

00001011 result=-ve=-11;o
MSB is a 0 so result is +ve (binary)

=+1110

Binary codes

Binary codes are codes which are represented in binary system with modification from the
original ones.

1 Weighted Binary codes

"1 Non Weighted Codes
Weighted binary codes are those which obey the positional weighting principles, each
position of the number represents a specific weight. The binary counting sequence is

an example.

Bi-Quinary

0000 0011 0000 0OCO 00OO0 0100001
0001 0100 0111 0001 0001 0100010
0010 0101 0110 0010 0011 0100100
0011 0110 0101 0011 0101 0101000
0100 0111 0100 0100 0111 0110000

0110 1001 1010 1100 1010 1000010
0111 1010 1001 1101 1100 1000100
1000 1011 1000 1110 1110 1001000
1001 1111 1111 1111 1111 1010000

0
1
2
3
4
5 0101 1000 1011 1011 1000 1000001
b
7
8
q

Reflective Code

A code is said to be reflective when code for 9 is complement for the code for 0, and

so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are
reflective, whereas the 8421 code is not.

Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary
representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and
Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each
position within the binary number is not assigned a fixed value. Ex: Excess-3 code

Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code derives
its name from the fact that each binary code is the corresponding 8421 code plus
0011(3).

Gray Code

The gray code belongs to a class of codes called minimum change codes, in
which only one bit in the code changes when moving from one code to the next. The
Gray code is non-weighted code, as the position of bit does not contain any weight.
The gray code is a reflective digital code which has the special property that any two
subsequent numbers codes differ by only one bit. This is also called a unit- distance
code. In digital Gray code has got a special place.

0000 0000 1000 1100
0001 0001 1001 1101
0010 0011 1010 1111
0011 0010 1011 1110
0100 0110 1100 1010
0101 0111 1101 1011

0110 0101 1110 1001
0111 0100 1111 1000

Binary to Gray Conversion

' Gray Code MSB is binary code MSB.

1 Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.

1 MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

1 MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

8421 BCD code (Natural BCD code):

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes.
Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful
for mathematical operations. The advantage of this code is its case of conversion to & from
decimal. It is less efficient than the pure binary, it require more bits.

Ex: 14—1110 in binary

But as 0001 0100 in 8421 ode.

The disadvantage of the BCD code is that , arithmetic operations are more complex than
they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in

these codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is,
the rules of binary addition 8421 no, but only to the individual 4 bit groups.

BCD Addition:

It is individually adding the corresponding digits of the decimal no,s expressed in
4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal
code , no correction is needed .If there is a carry out of one group to the next group or if the sum
term is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry
is added to the next group.

Ex: Perform decimal additions in 8421 code
(a)25+13

InBCD 25= 0010 0101
InBCD +13 =+0001 0011

38 0011 1000
No carry, no illegal code .This is the corrected sum

(b). 679.6 + 536.8

679.6 = 0110 0111 1001 .0110inBCD
+536.8 = +0101 0011 0010 .1000 inBCD

1216.4 1011 1010 0110 . 1110 illegal codes
+0110 + 0011 +0110 .+ 0110 add 0110 to each

(1)0001 (1)0000 (1)0101 . (1)0100 propagate carry
/ / / /
+1 +1 +1 +1

0010 0001 0110 . 0100

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from
the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no
borrow from the next group , then 610(0110)is subtracted from the difference term of this group.

(a)38-15

InBCD 38= 0011 1000
InBCD -15=-0001 0101

23 0010 0011
No borrow, so correct difference.

.(b) 206.7-147.8

0010 0000 0110 . inBCD
-0001 0100 0111 . in BCD

0000 1011 : borrows are present
-0110 -0110. subtract 0110

BCD Subtraction using 9’s & 10’s compliment methods:

Form the 9°s & 10°s compliment of the decimal subtrahend & encode that no. in
the 8421 code . the resulting BCD no.s are then added.

EX: 305.5-168.8

3055 = 305.5
-168.8= +83.1 9‘s comp 0f-168.8

(1)136.6
+1 end around carry
136.7 corrected difference

305.510 0011 00000101 . 0101

+831.110 +1000 00110001 . 0001 9's comp ofl .0 o BCD

+1011 0110 1011 is illegal code
+0110 add 0110

(1)0001 0011 0110 . 0110
+1 End around carry

0001 0011 0110 . 0111
=136.7

Excess three(xs-3)code:

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421
codeword plus 0011(3).1t is a sequential code & therefore , can be used for arithmetic
operations..It is a self-complementing code.s o the subtraction by the method of compliment
addition is more direct in xs-3 code than that in 8421 code. The xs-3 code has six invalid states
0000,0010,1101,1110,1111.. It has interesting properties when used in addition & subtraction.

Excess-3 Addition:

Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If
there is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the
sum term of those groups (because when 2 decimal digits are added in xs-3 & there is no carry ,
result in xs-6). If there is a carry out, add 0011 to the sum term of those groups(because when
there is a carry, the invalid states are skipped and the result is normal binary).

0110 1010
+0101 1011

1011 (1)0101 carry generated
propagate carry

0101 add 0011 to correct 0101 &
+0011 subtract 0011 to correct 1100

1001 1000 =6510

Excess -3 (XS-3) Subtraction:

Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the
corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the
next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are
subtracted in xs-3 & there is no borrow , result is normal binary). | f there is a borrow , subtract
0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states ,

result is in xs-6)

Ex: 267-175

267 = 0101 1001 1010
-175= -0100 1010 1000

0000 1111 0010
+0011 -0011 +0011

0011 1100 +0011

Xs-3 subtraction using 9’s & 10’s compliment methods:
Subtraction is performed by the 9°s compliment or 10°s compliment
Ex:687-348 The subtrahend (348) xs -3 code & its compliment are:

9‘s comp of 348 = 651

Xs-3 code of 348 = 0110 0111 1011

1°s comp of 348 in xs-3 = 1001 1000 0100
Xs=3 code 0f 348 in xs=3 = 1001 1000 0100

687
+651 9°s compl of 348

(1)338
+1 end around carry

339 corrected difference in decimal

1011 1010 687 in xs-3
1000 0100 1‘scomp 348 in xs-3

(1)0010 (1)0011 carry generated

propagate carry

0010 1110
end around carry

1111 (correct 1111 by sub0011 and
+0011 correct both groups of 0011 by

— — — adding 0011)

corrected diff in xs-3 = 33010

The Gray code (reflective —code):

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a
BCD code . It is a cyclic code because successive code words in this code differ in one bit
position only i.e, it is a unit distance code.Popular of the unit distance code.lt is also a reflective
code i.e,both reflective & unit distance. The n least significant bits for 2" through 2™*-1 are the
mirror images of thosr for 0 through 2"-1.An N bit gray code can be obtained by reflecting an N-
1 bit code about an axis at the end of the code, & putting the MSB of 0 above the axis & the
MSB of 1 below the axis.

Reflection of gray codes:

Gray Code
2 bit 3 bit 4 bit binary
00 000 0000
01 001 0001
11 011 0010
10 010 0011
110 0100
111 0101
101 0110
110 0111

~N o O W DN O

Binary to Gray conversion:

N bit binaryno isrepby BnBng B1
Gray code equivalent is by Gn Gn-1ccoceeeeees G:1
Bn, Gn are the MSB‘s then the gray code bits are obtaind from the binary code as

Gn=Bn Gn_]_:Bn@ Gn-2=Bn- G1=BQ$ Bl
Bn-1 1Ben-

—EX-or symbol

Procedure: ex-or the bits of the binary no with those of the binary no shifted one position to the
right . The LSB of the shifted no. is discarded & the MSB of the gray code no.is the same as the
MSB of the original binaryno.

EX: 10001 @ @ @

(d). Binary

Gray

(b). Binary:
Shifted binary: 1

Gray to Binary Conversion:

If an n bit gray no. is rep by Gn Gn-1rereeeeee G1

its binary equivalent by By Bn.g B1 then the binary bits are obtained from gray bits as

F ot ¥ F e ¥ Ty

Bn= Gn Bn-1=B." Gpy | Bn-2="~ Gpy Bl =B,
G1

To convert no. in any system into given no. first convert it into binary & then binaryto gray. To
convert gray no into binary no & convert binary no into require no system.

Ex:10110010(gray) = 11011100,= DC16=3345=22010
EX:1101

Gray: 1 1 0

| o8 &

Binary:1

Ex: 3AT71=0011,1010,0111,=1001110100(gray)

5275=101,011,011,=111110110(gray)
65210=1010001100,= 1111001010(gray)

XS-3 gray code:

In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit distance
between them i.e, they differ in more than one position.In xs-3 gray code , each decimal digit is
encoded with gray code patter of the decimal digit that is greater by 3. It has a unit distance
between the patterns for 0 & 9.

XS-3 gray code for decimal digits O through 9

Decimal digit Xs-3 gray code Decimal digit Xs-3 gray code
0010 1100
0110 1101
0111 1111
0101 1110
0100 1010

l i i '

Weighted Mor-welghled Reflective Sequential Alphanumere Effor detecting
and comecting

—

Farity Hamming

1)
1 1 ASCIl EBCDIC Hollerith
2421 5211 Excess-3 -

l

BCD

|
R

B421 2421 3321 4221 5211 5311 5421 63N 7421 7421 B42i

Binary codes block diagram

Error — Detecting codes: When binary data is transmitted & processed, it is susceptible to noise
that can alter or distort its contents. The 1°s may get changed to 0‘s & 1°s .because digital

systems must be accurate to the digit, error can pose a problem. Several schemes have been
devised to detect the occurrence of a single bit error in a binary word, so that whenever such an
error occurs the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as parity
bit to each word being transmitted. Two types of parity: Oddparity, evenparity forodd parity, the
parity bit is set to a _0° or a _1° at the transmitter such that the total no. of 1 bit in the word
including the parity bit is an odd no.For even parity, the parity bit is set to a _0° or a _1° at the
transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity
0000
0001
0010
0011
0100
0100
0110
0111
1000
1001

RPI OO FP OO O
Ol KR, OO, Ok, O

O N OO | WI DN O

When the digit data is received . a parity checking circuit generates an error signal if the
total no of 1°s is even in an odd parity system or odd in an even parity system. This parity check
can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd
parity is used more often than even parity does not detect the situation. Where all 0‘s are created
by a short ckt or some other fault condition.

Ex: Even parity scheme
(a) 10101010 (b) 11110110 (¢)10111001
Ans:
@ No.of 1°sinthe word iseven is 4 so there is no error
® No.of 1°s inthe word iseven is 6 so there is no error
© No.of 1°s inthe word is odd is 5 so there is error

Ex: odd parity
(2)10110111 (b) 10011010 (c)11101010

Ans:

@ No.of 1°s inthe word is even is 6 so word has error
® No. of 1°s in the word is even is 4 so word has error
© No.of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort
of 2 dimensional parity. As each word is transmitted, it is added to the sum of the previously
transmitted words, and the sum retained at the transmitter end. At the end of transmission, the
sum called the check sum. Up to that time sent to the receiver. The receiver can check its sum
with the transmitted sum. If the two sums are the same, then no errors were detected at the
receiver end. If there is an error, the receiving location can ask for retransmission of the entire
data, used in teleprocessing systems.

Block parity:

Block of data shown is create the row & column parity bits for the data using odd parity.
The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each
column & row including the data bits & parity bit is odd as

Parity bit

Error—Correcting Codes:

A code is said to be an error —correcting code, if the code word can always be deduced
from an erroneous word. For a code to be a single bit error correcting code, the minimum
distance of that code must be three. The minimum distance of that code is the smallest no. of bits
by which any two code words must differ. A code with minimum distance of 3 can‘t only correct
single bit errors but also detect (can‘t correct) two bit errors, The key to error correction is that
it must be possible to detect & locate erroneous that it must be possible to detect & locate
erroneous digits. If the location of an error has been determined. Then by complementing the
erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In
this , to each group of m information or message or data bits, K parity checking bits denoted by

pk located at positions 2 ¥* from left are added to form an (m+k) bit code word.
To correct the error, k parity checks are performed on selected digits of each code word, & the
position of the error bit is located by forming an error word, & the error bit is then
complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 ¥th position
depending upon whether the check for parity involving the parity bit Px is satisfied or not.Error
positions & their corresponding values :

Error Position For 15 bit code For 12 bit code For 7 bit code
CiC3CCy CsC3Co C CsCCy
0000 0000 000
0001 0001 001
0010 0010 010
0011 0011 011
0100 0100 100
0101 0101 101

0 01 1 10

1 11

[EEN
o

OO N O B W DN O

o'_\ol—\OI—\OI—\

S R =)
I
'_\,_\oor—\n—\oon—\
[EEY

7- bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 2° 21&2? from left are
added to make a 7 bit codeword which is then transmitted.

The word format

[P [Pz [Ds [Pa [Ds [De |Dr
D—Data bits P-

1

P1P2D3P4D5D6D7

1 00 001
1110000
0 01 1001
1 011010

For Excess-3

— [[

P1P2D3P4D5D6D7
0 00 0O0O0 O
110100
0 10101
1 00 001
1110000
0 01 1001

Decimal Digit

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code
The bit pattern is
P1P2D3P4D5D6D7

1 1 0 1

Bits 1,3,5,7 (P1111) must have even parity, so P1 =1

Bits 2, 3, 6, 7(P2101) must have even parity, so P>=0

Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

The final code is 1010101

EX: Code word is 1001001

Bits 1,3,5,7 (C1 1001) —no error —put a 0 in the 1°s position—C1=0

Bits 2, 3, 6, 7(C20001)) — error —put a 1 in the 2°s position—C2=1

Bits 4,5,6,7 (Cs 1001)) —no error —put a 0 in the 4°s position—C3=0
15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 2° 2! 22 23
Word format is
Pi|P2 |Ds |Ps |Ds | De | D7 |Ps | De |D10|D11|D12| D13 | D14

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 2° 2* 22 23
Word format is
Pr |P2 |Ds |Pa |Ds |Ds |[D7 [Ps | Dg | D10| D11 | D12

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to the decimal
digits. It is used for transmitting data between computers & its I/0O device such as printers,
keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code &
EBCDIC code.

Boolean algebra

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
Claude E. Shannon introduced a two-valued Boolean algebra called switching algebra that
represented the properties of bistable electrical switching circuits. For the formal definition of
Boolean algebra, we shall employ the postulates formulated by E. V. Huntington in 1904.

Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set
of elements (0, 1), two binary operators called OR, AND, and one unary operator NOT. It is the
basic mathematical tool in the analysis and synthesis of switching circuits. It is a way to express
logic functions algebraically.

Axioms and laws of Boolean algebra

Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept without

AND Operation OR Operation NOT Operation
Axiom1: 0.0=0 0+0=0 81
Axiom?2: 0.1=0 0+1=1 10
Axiom3: 1.0=0 1+0=1
Axiom4: 1.1=1 1+1=1

Complementation law

Lawl: 81 Law3: if A=0,then Al
Law2: £0 Law4: if A=1,then A=0

Law5: if AA (double inversion law)

AND Law OR Law
Lawl: A.0=0 (Null law) Lawl: A+0=A
Law2: A.1=A (Identity law) Law2: A+1=1
Law3: A.A=A (Impotence law) Law3: A+A=A (Impotence law)
Law4: A. A0 Law4: A+ Al

Basic Theorems and Properties of Boolean algebra

Commutative law

Lawl: A+B=B+A
Associative law

Lawl: A+ (B+C)= (A +B) +C
Distributive law

Lawl: A.(B+C)=AB+ AC
Absorption law

Lawl: A +AB =A

Solution: A(1+B)
A

DeMorgan Theorems

Theoreml:TB =AB

Redundant Literal Rule

Rulel: A+ B=A+B
Solution: A+ B

Law2: A.B=B.A

Law2: A(B.C) = (A.B)C

Law2: A+BC=(A+B).(A+C)

Law2: AA+B)=A

Solution: A.A+A.B
A+A.B
A(1+B)
A

Theorem2:;(B =AB

Rule2: A.(AB)=AB
Solution: A.(AB)

(A+A).(A+B) - A +BC = (A + B).(A +C) AAA.B

A+B ~A+A=1

Consensus Theorem

AB

Theorem1. AB+ A’C+BC= AB+A’C Theorem2. (A+B). (A’+C).(B+C) =(A+B).(A’+C)

The BC term is called the consensus term and is redundant. The consensus term is formed from

a PAIR OF TERMS in which a variable (A) and its complement (A’) are present; the consensus

term is formed by multiplying the two terms and leaving out the selected variable and its

complement

Consensus Theorem1 Proof:

AB+A’C+BC=AB+A’C+(A+A’)BC
=AB+A’C+ABC+A’'BC
=AB(1+C)+A’C(1+B)

=AB+ A'C

Principle of Duality

Each postulate consists of two expressions statement one expression is transformed into the
other by interchanging the operations (+) and (-) as well as the identity elements 0 and 1.
Such expressions are known as duals of each other.

If some equivalence is proved, then its dual is also immediately true.

E.g. If we prove: (x.x)+(x+x’)=1, then we have by duality: (x+x):(x".x")=0

The Huntington postulates were listed in pairs and designated by part (a) and part (b) in below
table.
Table for Postulates and Theorems of Boolean algebra
Part-A Part-B
A+0=A A.0=0
A+1=1 A.1=A
A+A=A (Impotence law) A.A=A (Impotence law)
A+ Al A. A0

“AA (double inversion law)
Commutative law: A+B=B+A A.B=B.A

Associative law: A+ (B+C)=(A +B) +C A(B.C) = (A.B)C

Distributive law: A.(B+ C)=AB+ AC A+ BC=(A+B).(A+C)
Absorption law: A +AB=A A(A+B)=A

DeMorgan Theorem: 83 =AB "(B=AB

Redundant Literal Rule: A+ B=A+B A.(AB)=AB

Consensus Theorem: AB+ A’C+BC= AB+A’C | (A+B). (A’+C).(B+C) =(A+B).(A’+C)

History of Digital ICs and their Classifications
Integrated circuit: A collection of one or more gates fabricated on a single silicon chip is called an
Integrated Circuit(IC) or it can be defined as an Integrated Circuit(IC) is a silicon wafer or a Die that
contains two or more number of active such as diodes, transistors and some of passive components
such as resistors, capacitors.
NOTE: The passive element Inductor can’t be fabricated using ICs, Because they have
magnetic flux
History of IC:
There are many ways are available to design electronic logic circuit. First electrically controlled logic
circuits were developed in 1930s at Bell laboratories based on relays.
The first electronic digital computer named as ENIAC was developed in mid 1940s based on vacuum
tubes. It has 100 feet long, 10 feet height, 3 feet deep and consumed 140kw of power.
By the invention of semiconductor diode and transistor after 1947 smaller, faster and more capable
computers were designed.
Better computers are designed by the invention of ICs which allowed multiples diodes, transistors
and other components to be fabricated on a single chip of silicon in 1960s.
The first 1C family was introduced in 1960.
Classification of Digital 1Cs: Based on the size or number of logic components/gates fabricated per

chip the ICs are classified into different Integrations as
» Small Scale Integration (SSI): It have less than 100 components (about 10 gates).

» Medium Scale Integration (MSI): It contains between 100-1000 components or have more than
10 but less than 100 gates.

» Large Scale Integration (LSI): Here number of components is between 1000 and 10000 or have gates
between 100-1000.

> Very Large Scale Integration (VLSI): It contains components between 10000-100000 per chip or
gates between 1000-10000 per chip.

» Ultra Large Scale Integration (ULSI): It contains more than 100000 components per chip.

» Giant Scale Integration (GSI): It contains much more than 2000000 components per chip.

Logic Families and their classifications:
Logic Families:
It is a collection of different IC chips that have similar input, output and internal circuit characteristics i.e.
group of compatible ICs with same logic levels and supply voltages but perform different logic functions.
NOTE: 1) Chips from same family can be interconnected.

2) Chips from different family may not be compatible, means they may use different power
supply voltages and input, output conditions.

Classification of Logic Families:

Logic families are mainly classified as two types as

Bipolar Logic Families: It mainly uses bipolar devices like diodes, transistors in addition to passive elements
like resistors and capacitors. These are sub classified as saturated bipolar logic family and unsaturated bipolar
logic family. i) Saturated Bipolar Logic Family: In this family the transistors used in ICs are driven into
saturation.

Examples: a) Transistor-Transistor Logic (TTL)

b) Resistor-Transistor Logic (RTL)

c) Direct Coupled Transistor Logic (DCTL)

d) Diode Transistor Logic (DTL)

e)High Threshold Logic(HTL)

f) Integrated Injection Logic (IIL or 12L)

i)Unsaturated bipolar logic family: In this family the transistors used in ICs are not driven into
saturation.

Examples: a) Schottky TTL
b) Emitter Coupled Logic(ECL)

B) Unipolar Logic Families: It mainly uses Unipolar devices like MOSFETS in addition to passive elements
like resistors and capacitors. These logic families have the advantages of high speed and lower power
consumption
than Bipolar families. These are classified as
i) PMOS or P-Channel MOS Logic Family
if) NMOS or N-Channel MOS Logic Family

iii) CMOS Logic Family

Logic Families

Bipolar Logic Family Unipolar Logic Family

‘ ‘ i) PMOS or P-Channel MOS Logic Family
ii) NMOS or N-Channel MOS Logic Family

Saturated Bipolar Unsaturated Bipolar
Logic Family Logic Family ifi) CMOS Logic Family

a) Transistor-Transistor Logic (TTL) a) Schottiy TTL
b) Resistor-Transistor Logic (RTL) b) Emitter Coupled Logic(ELL)
¢) Direct Coupled Transistor Logic (DCTL)
d) Diode Transistor Logic (DTL)
g)High Threshold Logic{HTL)
) Integrated Infection Logic (1IL or FL)
Fig.1 Classification of Logic Families

CMOS Logic: The basic building blocks in CMOS logic circuits are MOS transistors. All circuits that are
implemented by CMOS logic have Basic CMOS circuit which will form by the Complementary connection of
NMOS and PMOS transistors. So that this logic is named as Complementary Metal Oxide Semiconductor
Logic.

Metal Oxide Semiconductor transistor:

1 A MOS transistor contains 4 terminals named as Gate(G), Source(S), Drain(D) and Substrate(Sb).

1 Among 4 terminals Gate is an insulating terminal. So no conduction will takes place between remaining
two(S and D) terminals. Hence it has highest resistance between Source and Drain.

1 The voltage applied at the Gate terminal may create electric field that enhances or retards the flow of
current between Source and Drain. Due to this field effect MOS transistors are called Field Effect
Transistors (FET).

7 Here the Resistance between Source and Drain also controlled by voltage applied at Gate terminal hence
MOSFETS also called as Voltage Controlled Resistors.

] MOS transistors are classified into two types based on the use of the channel type as N-Channel or NMOS
transistor and P-Channel or PMOS transistor.

1 Both N-Channel or NMOS transistor and P-Channel or PMOS transistor are again sub divided into two

types based on their mode of operation as Enhancement mode and Deletion mode transistors

I In Enhancement mode of operation a channel is developed between two terminals Source and Drain of
respective MOS transistors.ie. If it is NMOS transistor then N- Channel and it is PMOS then PChannel
transistor by applying required voltage at Gate terminal.

1 In Depletion mode of operation the already existed channel will be removed between two

terminals Source and Drain of respective MOS transistors.ie. If it is NMOS transistor then NChannel

and it is PMOS then P-Channel transistor by applying required voltage at Gate terminal.

7 In N-MOS Transistor if input voltage Vgs is Zero then resistance between Source and Drain Rds is very
high in terms of MQ and if Vgs is more positive voltage then Ras is very low in terms of (0-10) Q.

"1 In P-MOS Transistor if input voltage Vs is Zero then resistance between Source and Drain Rds is very
high in terms of MQ and if Vgs is more negative voltage then Rds is very low in terms of (0-10) Q.

Note: A small current will flows through high resistance between Gate and Source or

Drain junctions.

1 Explain the Operation of basic CMOS circuit?

Basic CMOS

MOSFETS
|
l |

N-Channel P-Channel
(N-MOS) (P-MOS)

Enhancement Mode Depletion Mode Enhancement Mode
N-MOS Transistor N-MOS Transistor P-MOS Transistor

(Developing N-channel (Removing Existed N-channel (Developing P-channel
Between S and D) Between S and D) Between S and D)

Fig.Classification of MOSFETs

Depletion Mode
P-MOS Transistor

(Removing Existed P-channel
Between S and D)

D

40

E) (c) (d)
Fig.Symbols of NMOS(a,b) and PMOS(c,d) Transistors

Basic NMOS and PMOS transistors that connected in a complementary connection to form
CMOS logic circuit.

7 It contains pull-up and pull-down networks.

7 Pull-up network contains PMOS transistor and pull-down network consists of NMOS

Transistor.

1 When input applied as logic ‘0’(L) the PMOS transistor is in ON condition and that translates
output to logic ‘1°(H), i.e., applied voltage is pulled up to SV(H) from 0V(L) by PMOS
transistor. Hence it is called as Pull-Up transistor.

" When input applied as logic ‘1°(H) the NMOS transistor is in ON condition and that translates
output to logic ‘0’(L), i.e., applied voltage is pulled down to OV(L) from 5V(H) by NMOS
transistor. Hence it is called as Pull-Down transistor.

Operation:

Case (i): When Vin= 0V, then NMOS transistor is OFF state, since its Ves= 0 V. PMOS is in ON state Since
its Vs is large negative (-5V). So PMOS presents only a small resistance between Voo and output. Hence
output is 5 V.

Case (ii): When Vin=5V, then PMOS transistor is in OFF state, since its Ves=0 V. NMOS is in ON state
Since its Ves is large positive (+5 V). So NMOS presents only a small resistance between output and ground.
Hence output is 0 V.

Note: From case (i) & (ii) we can conclude that the operation of a basic CMOS circuit gives

INVERTING operation.

2 Input NAND gate using CMOS logic

NAND gate is one of the basic logic gates to perform the digital operation on the input signals.

1 It is the combination of AND Gate followed by NOT gate i.e. it is the opposite operation of AND

gate where the Logic NAND gate is complementary of AND gate.

1 The logic output of NAND gate is low(FALSE) only when the inputs are high (TRUE).

1 To implementation 2 Input NAND gate using CMOS logic we require 2 pull-up PMOS and 2 pull-down
NMOS transistors.

Operation:

Case (i): When A=B=0 V, then both NMOS transistors are in OFF state, since its Vesa= Vess = 0 V. Both
PMOS transistors (Pa, Ps) are in ON state. Since its Vesaand Vese voltage is large negative (-5V). So PMOS
transistors presents only a small resistance between Voo and output. Hence output is 5 V.

Case (ii): When A=B=5 V, then both PMOS transistors are in OFF state, since its input voltages Vesa= Vcss
=0 V. Both NMOS transistors (Na, Ns) are in ON state Since its Vesaand Vessg is large positive (+5V). So
NMOS transistors presents only a small resistance between Output and ground. Hence output is 0 V.

Case (iii): When A=0V and B=5 V, then NMOS transistor (Na) is in OFF state, since its input voltage Vesa7
0 V and NMOS transistor (Ns) is in ON state since its Vess=5V. PMOS transistor (Pa) is in ON state, since it
Vesa= -5V and PMOS transistor (Ps) is in OFF state since its Vese=0V. So PMOS transistor Papresents only a
small resistance between Vop and output. Hence output is 5 V.

Case (iv): When A=5 V and B=0 V, then NMOS transistor (NAa) is in ON state, since its input voltage Vesa=
+5V and NMOS transistor (NB) is in OFF state since its Vese=0V. PMOS transistor (Pa) is in OFF state, since
its Vesa= OV and PMOS transistor (Ps) is in ON state since its Vese=-5V. So PMOS transistor Ps presents
only a small resistance between Vob and output. Hence output is 5 V.

Fig: Two Input NOR gate circuit using CMOS logic

NOTE: For a given Si Area N-Channel Transistor has lower ON resistance than P-Channel
Transistor. So, the circuit having series N-Channel connection is more faster than Parallel PChannel,
Hence NAND circuit is faster than NOR.

Transistor-Transistor Logic Families are classified as following:

(@) Early TTL families

 74L Low power

* 74H High speed

(b) Schottky TTL families

* 74S Schottky

* 74LS Low power Schottky

« 74AS Advanced Schottky

» 7AALS Advanced Low power Schottky

* 74F Fast

(a) Early TTL families:

» The original TTL family of logic gates was introduced by Sylvania in 1963. It was popularized by
Texas Instruments, whose “7400-series” part numbers for gates and other TTL components quickly
became an industry standard.

» As in 7400-series CMOS, devices in a given TTL family have part numbers of the form 74FAMnn,
where “FAM” is an alphabetic family mnemonic and nn is a numeric function designator. Devices in
different families with the same value of nn perform the same function.

In the original TTL family, “FAM” is null and the family is called 74-series TTL.
> The 74H (High speed TTL) family used lower resistor values to reduce propagation delay at the
expense of increased power consumption.

» The 74L (Low-power TTL) family used higher resistor values to reduce power consumption at
the expense of propagation delay.

(b) Schottky TTL families:

transistors and low resistor values, this family has much higher speed, but higher power consumption, than the
original 74-series TTL.

» T4LS (Low-power Schottky TTL), introduced shortly after 74S. By combining Schottky
transistors with higher resistor values, 74LS TTL matches the speed of 74- series TTL but has about
one-fifth of its power consumption.

» Thus, 74LS is a preferred logic family for new TTL designs. Subsequent IC processing and
circuit innovations gave rise to two more Schottky logic families as 74AS (Advanced Schottky TTL)
and 74ALS (Advanced Low-power Schottky TTL).

» The 74AS (Advanced Schottky TTL) family offers speeds approximately twice as fast as 74S with

approximately the same power consumption.

» The 74ALS (Advanced Low-power Schottky TTL) family offers both lower power and higher
speeds than 74LS, and rivals 74LS in popularity for general-purpose requirements in new TTL
designs.

» The 74F (Fast TTL) family is positioned between 74AS and 74ALS in the speed/power
tradeoff, and is probably the most popular choice for high-speed requirements in new TTL
designs.

Characteristics of TTL logic families:
» The important characteristics of TTL families are summarized in Table 4.17.
» The first two rows of the table list the propagation delay (in nanoseconds) and the power consumption
(in milliwatts) of a typical 2-input NAND gate in each family.
» One figure of merit of a logic family is its speed-power product listed in the third row of the table.
» The remaining rows have values of voltage levels for all TTL families.

74 74S 74LS T4AS T4ALS T4F

Performance ratings

Propagation delay (ns)

Power dissipation (mW) 10
Max. clock rate (MHz) 35

Fan-out (same series) 10
Speed-Power product(pj) 90

Voltage parameters
Vor(min) (V) 2.4
Vor(max) (V) 0.4
Vir(min) (V) 2.0
Vir (max) (V) 0.8

Characteristics of TTL logic families.

different electrical characteristics.
» Iftwo circuits that are going to interface have different Electrical characteristics, then direct contact
can’t be made.
> Insuch cases Driver and Load circuits are connected through INTERFACE. Interface circuitry shifts
levels of voltage & current for compatibility.
» Driver output signal must satisfy the requirements of load circuit.
» If both driver and load require different power supplies, then outputs of both circuits must swing
between its specified voltage ranges
» The interfacing may done in between two different logic families or with in the same logic families.
> Interfacing in between CMOS and TTL logic families is achieved in ways as
(&) TTL Driving CMOS circuits.
(b) CMOS driving TTL circuits.
Boolean Function

Boolean algebra is an algebra that deals with binary variables and logic operations.

A Boolean function described by an algebraic expression consists of binary variables, the
constants 0 and 1, and the logic operation symbols.

For a given value of the binary variables, the function can be equal to either 1 or 0.

F(vars) = expression

Set of binary Variables Operators (+, ¢, ‘)
Constants (0, 1)
Groupings (parenthesis)
Variables
Consider an example for the Boolean function
Fl=x+Yy'z
The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equal to 0
otherwise. The complement operation dictates that wheny’ =1,y = 0. Therefore, F1=1ifx=1
orify=0andz=1.
A Boolean function expresses the logical relationship between binary variables and is evaluated
by determining the binary value of the expression for all possible values of the variables.
A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2", where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from 0 through 2" - 1.

Truth Table for F1

)

Gate Implementation of F1=x+y’z

Note:
Q: Let a function F() depend on n variables. How many rows are there in the truth table of F() ?
A: 2" rows, since there are 2" possible binary patterns/combinations for the n variables.

Truth Tables

Enumerates all possible combinations of variable values and the corresponding function
value

Truth tables for some arbitrary functions
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the below.

i | Fa F3

1 1

Truth table: a unique representation of a Boolean function
If two functions have identical truth tables, the functions are equivalent (and vice-
versa).
Truth tables can be used to prove equality theorems.
However, the size of a truth table grows exponentially with the number of variables
involved, hence unwieldy. This motivates the use of Boolean Algebra.
Boolean expressions-NOT unique
Unlike truth tables, expressions epresenting
a Boolean function are NOT unique.
* Example:
— F(xy,z)=x'ey'ez’ + X' oyez’ +
Xeyez’
— G(x,y,z)=x'ey’ ez +ye7’
The corresponding truth tables for
F() and G() are to the right. They are
identical.
Thus, F() = G()

Algebraic Manipulation (Minimization of Boolean function)

* Booleanalgebra is a useful tool for simplifying digital circuits.
Why do it? Simpler can mean cheaper, smaller, faster.
Example: Simplify F = x'yz + x'yz’ + xz.

F=xyz + X'yz’ + xz
=x'y(z+2’) + xz
=x'yel+xz
=Xy + xz

Example: Prove

7. ,057

Xy +xX'yz' +xyz =x'2" + yz’
Proof:

2. ,757

Xy 7'+ xX'yz’+ xyz’
= XIyIZI + XIyZI + XIyZI + Xyzl
=X'Z'(y'+y) +yz’(X'+x)
=x'z'el +yz'el
= XIZI + yZI

Complement of a Function

e The complement of a function is derived by interchanging (® and +), and (1 and 0), and
complementing each variable.

e Otherwise, interchange 1s to Os in the truth table column showing F.
e The complement of a function IS NOT THE SAME as the dual of a function.
Example
* Find G(x,y,z), the complement of F(x,y,z) = xy’'z’ + X'yz
Ans: G =F = (xy'z’ + xX'yz)’
=(xy’z’)" o (X'yz)’ DeMorgan
= (x'+y+z) * (x+y’'+z’) DeMorgan again
Note: The complement of a function can also be derived by finding the function’s dual, and
then complementing all of the literals

Canonical and Standard Forms

We need to consider formal techniques for the simplification of Boolean functions.
Identical functions will have exactly the same canonical form.

Minterms and Maxterms
Sum-of-Minterms and Product-of- Maxterms

Product and Sum terms
Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

Literal: A variable or its complement

Product term: literals connected by e

Sum term: literals connected by +

Minterm: a product term in which all the variables appear exactly once, either complemented or
uncomplemented.

Maxterm: a sum term in which all the variables appear exactly once, either complemented or
uncomplemented.

Canonical form: Boolean functions expressed as a sum of Minterms or product of Maxterms are said to be
in canonical form.

Minterm

Represents exactly one combination in the truth table.
Denoted by mj, where j is the decimal equivalent of the minterm’s corresponding binary

combination (bj).
Avariable in m;jis complemented if its value in bj is 0, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, b; = 011 and its corresponding minterm is denoted
by mj=A’BC

Maxterm

Represents exactly one combination in the truth table.

Denoted by M, where j is the decimal equivalent of the maxterm’s corresponding binary
combination (b)).

Avariable in M;is complemented if its value in b; is 1, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, b; = 011 and its corresponding maxterm is denoted
by M; = A+B’+C’

Truth Table notation for Minterms and Maxterms

* Minterms and Maxterms are easy to denote using a truth table.
Example: Assume 3 variables x,y,z (order is fixed)

Minterm Maxterm

X'y'z’=mo X+y+z = Mo

Xy'z=m X+y+z' = M1

X'yz' = m; X+y'+z = M,

X'yz =ms X+y'+2'= M3

Xy'z’ =ma X'+y+z = My

Xy'z =ms X'+y+z' = Ms

Xyz' = me X'+y'+z = Mg

Xyz = my X'+y'+z' = My

Canonical Forms

* Every function F() has two canonical forms:
— Canonical Sum-Of-Products (sum of minterms)
— Canonical Product-Of-Sums (product of maxterms)
Canonical Sum-Of-Products:
The minterms included are those mjsuch that F() = 1 in row j of the truth table for F().
Canonical Product-Of-Sums:
The maxterms included are those M;j such that F() = 0in row j of the truth table for F().

Example

[«)]

Consider a Truth table for fi(a,b,c) at right

The canonical sum-of-products form for f1 is

fi(a,b,c)=mi+ my + ms+ me

=a’b’c+a’bc’ + ab’c’ + abc’

The canonical product-of-sums form for f1 is

fi(a,b,c) = Mo ® M3 ¢ Ms « My
= (a+b+c)e(a+b’+c’)e (a’+b+c’)e(a’+b’'+C’).

e Observe that: mj= My

R R (|| O|O|O| O
| O | 0Ok || |O|O|T

Shorthand: Y and T
« fi(a,b,c)=3 m(1,2,4,6), where 3 indicates that this is a sum-of-products form, and m(1,2,4,6)
indicates that the minterms to be included are m1, mz, mg, and me.
fi(a,b,c) =TT M(0,3,5,7), where TT indicates that this is a product-of-sums form, and M(0,3,5,7)
indicates that the maxterms to be included are Mo, M3, Ms, and M.
Since mj= My’ for anyj,
> m(1,2,4,6) =TT M(0,3,5,7) = fi(a,b,c)

Conversion between Canonical Forms
* Replace Y with TT (or vice versa) and replace those j’s that appeared in the original form with those
that do not.
* Example:
fi(a,b,c)=a’b’c+a’bc’ + ab’c’ + abc’
=mi+m2+mg+me
=5(1,2,4,6)
=TT1(0,3,5,7)
= (a+b+c)e(a+b’+c’)e(a’+b+c’)e(a’+b'+C’)
Standard Forms

Another way to express Boolean functions is in standard form. In this configuration, the terms that form
the function may contain one, two, or any number of literals.
There are two types of standard forms: the sum of products and products of sums.
The sum of products is a Boolean expression containing AND terms, called product terms, with one or
more literals each. The sum denotes the ORing of these terms. An example of a function expressed as a
sum of products is

Fl=y +xy+x'yz

The expression has three product terms, with one, two, and three literals. Their sum is, in effect, an OR

operation.
A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any
number of literals. The product denotes the ANDing of these terms. An example of a function expressed as
a product of sums is

F2=x(y'+z)(xX'+y +2')
This expression has three sum terms, with one, two, and three literals. The product is an AND operation.

Conversion of SOP from standard to canonical form
Example-1.

Express the Boolean function F = A + B’C as a sum of minterms.

Solution: The function has three variables: A, B, and C. The first term A is missing two variables; therefore,
A=A(B+B’)=AB+AB’
This function is still missing one variable, so
A=AB(C+C')+AB (C+C')
= ABC + ABC’ + AB’'C + AB'C’
The second term B’C is missing one variable; hence,
B’C =B’C(A+A’) = AB’C + A’B’C
Combining all terms, we have
F=A+B'C
=ABC + ABC' + AB'C+ AB'C’'+ A’'B'C
But AB’C appears twice, and according to theorem (x + x = x), it is possible to remove one of those
occurrences. Rearranging the minterms in ascending order, we finally obtain
F=A'B'C+AB'C + AB’'C + ABC' + ABC
=ml+m4+m5+m6+m7
When a Boolean function is in its sum-of-minterms form, it is sometimes convenient to express the
function in the following brief notation:
F(A,B,C)=>m(1,4,5,6,7)

Example-2.
Express the Boolean function F = xy + x’z as a product of maxterms.
Solution: First, convert the function into OR terms by using the distributive law:
F=xy+xz=(xy+x)(xy+2)
= (x +X)(y +X')(x + 2)(y + 2)
=(X+y)(x +2z)(y +2)
The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,
X+y=xX+y+zzZ=(X+y+2z)(X +y+2)
X+z=x+z+yy' =(x+y+2z)(x+Vy +2)
ytz=y+z+xx'=(x+y+z)(X'+y+2)
Combining all the terms and removing those which appear more than once, we finally obtain
F=(x+y+2z)(x+y +z)(X +y+2z)(X' +y+2)
F= MOM2M4M5
A convenient way to express this function is as follows:
F(x,y,z) =ntM(0, 2, 4, 5)
The product symbol, i, denotes the ANDing of maxterms; the numbers are the indices of the maxterms of
the function.

Digital Logic Gates

Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to
implement a Boolean function with these type of gates.

Graphic Alpebraic
symbod function

[™

S A

Inverter

Buificr

MAMNDY

Exclusive-OR
[30OR)

Exchsive-MOR
or
equivalence

Properties of XOR Gates

XOR (also @) :the “not-equal” function
XOR(X,Y) =X ® Y = XY + XY’
Identities:
- X®0=X
- X®1=X
- X®X=0
- X@eXx=1
Properties:
- X®@Y=YODX
- XQY)OW=XD(YOW)

Universal Logic Gates

NAND and NOR gates are called Universal gates. All fundamental gates (NOT, AND, OR) can be
realized by using either only NAND or only NOR gate. A universal gate provides flexibility and
offers enormous advantage to logic designers.

NAND as a Universal Gate

NAND Known as a “universal” gate because ANY digital circuit can be implemented with NAND
gates alone.

To prove the above, it suffices to show that AND, OR, and NOT can be implemented using
NAND gates only.

NOT Gate

| F = (XX)
2] oo
o—| F = ((X<¥)Y
= (XYY

= XMWY
Gate - x.y

X | 3)__}3 (X'-Y:)'
R D) il

Unit-11
Combinational circuits
Two-variable k-map:

A two-variable k-map can have 22=4 possible combinations of the input variables A and
Heach of these combinations, A B ,A B,AB ,AB(in the SOP form) is called a minterm. The
minterm may be represented in terms of their decimal designations — mO for A B, m1 for A B,m2
for AB and m3 for AB, assuming that A represents the MSB. The letter m stands for minterm and
the subscript represents the decimal designation of the minterm. The presence or absence of a
minterm in the expression indicates that the output of the logic circuit assumes logic1 or logic 0
level for that combination of input variables.

The expression f=A B,+A B+AB+AB , it can be expressed using min
term as F= m0+m2+m3=Ym(0,2,3)

Using Truth Table:

Minterm | Inputs
A

0 0
1 0
2 1
3 1
A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that
the particular mintermdoes not appear in the expression for output . this information can also be
indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k-
map represents a unique minterm. The minterm designation of the squares are placed in any
square, indicates that the corresponding minterm does output expressions. And a 0 or no entry in
any square indicates that the corresponding minterm does not appear in the expression for output.

B o 1
0 A?B'

1LAB' AB

The minterms of a two-variable k-map

The mapping of the expressions =Y m(0,2,3)is

B
A0
0 1

2

1. 1

k-map of > m(0,2,3)
EX: Map the expressions =A B+AB

F= mi+my=> m(1,2)The k-map is

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for
adjacent adjacent squares having 1°‘s minterms adjacent to each other, and combine them to form
larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if
their minterms differ in only one variable. (i.e, A B & AB differ only in one variable. so they may
be combined to form a 2-square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal designations must
differ by a power of 2. A minterm can be combined with any number of minterms adjacent to it
to form larger squares. Two minterms which are adjacent to each other can be combined to form
a bigger square called a 2-square or a pair. This eliminates one variable — the variable that is not
common to both the minterms. For EX:

mO0 and m1 can be combined to yield,
fi = m0+m1=AB+A B=A (B+B
)=A m0 and m2 can be combined to yield,
fo= m0+m2=A B+AB=B(A + A)=B

m1 and m3 can be combined to yield,

fa= m1+m3=A B+AB=B(4 + A)=B
m2 and m3 can be combined to yield,
fs = m2+m3=AB+AB=A(B+B)=A
mo ,m1 ,mz and mz can be combined to yield,
=A B+AB +AB+AB
=A (B+B) +A(B+B)

=A+A

A

B o

of 1
1 [uf

f2=B f3=B f4
The possible minterm groupings in a two-variable k-map.

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square
eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after
minimization, consider only those variables which remain constant through the square, and
ignore the variables which are varying. Write the non complemented variable if the variable is
remaining constant as a 1, and the complemented variable if the variable is remaining constant as
a 0, and write the variables as a product term. In the above figure f; read asA , because, along the
square , A remains constant as a O, that is, as A, where as B is changing from 0 to 1.

EX: Reduce the minterm f=A B +AB +AB using mapping Expressed in terms of minterms, the
given expression is F=mgtmg+maz+ ms=m) (0,1,3)& the figure shows the k-map for f and its
reduction . In one 2-square, A is constant as a 0 but B varies froma 0 to a 1, and in the other 2-
square, B is constant as a 1 but A varies froma 0 to a 1. So, the reduced expressions is A +B.

B
Ay o 1
o L | [T
10| (1

1

3

It requires two gate inputs for realization as
f=A+B (k-map in SOP form, and logic diagram.)

The main criterion in the design of a digital circuit is that its cost should be as low as
possible. For that the expression used to realize that circuit must be minimal.Since the cost is
proportional to number of gate inputs in the circuit in the circuit, an expression is considered
minimal only if it corresponds to the least possible number of gate inputs. & there is no
guarantee for that k-map in SOP is the real minimal. To obtain real minimal expression, obtain
the minimal expression both in SOP & POS form form by using k-maps and take the minimal of
these two minimals.

The 1°s on the k-map indicate the presence of minterms in the output expressions, where
as the Os indicate the absence of minterms .Since the absence of a minterm in the SOP expression
means the presense of the corresponding maxterm in the POS expression of the same .when a
SOP expression is plotted on the k-map, Os or no entries on the k-map represent the maxterms.
To obtain the minimal expression in the POS form, consider the Os on the k-map and follow the
procedure used for combining 1s. Also, since the absence of a maxterm in the POS expression
means the presence of the corresponding minterm in the SOP expression of the same , when a
POS expression is plotted on the k-map, 1s or no entries on the k-map represent the minterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A function in two
variables (A, B) has four possible maxterms, A+B,A+B,A +B,A +B

. They are represented as Mo, M1, M2, and M3respectively. The uppercase letter M stands for
maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating
the non-complemented variable as a 0 and the complemented variable as a 1 and putting them
side by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, Os are placed in the squares
corresponding to the maxterms which are presented in the expression an dl1s are placed in the
squares corresponding to the maxterm which are not present in the expression. The decimal
designation of the squares of the squares for maxterms is the same as that for the minterms. A
two-variable k-map & the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

0 1
oy
2
0|0

I .

Minimization of POS Expressions:

To obtain the minimal expression in POS form, map the given POS expression on to the
K-map and combine the adjacent Os into as large squares as possible. Read the squares putting
the complemented variable if its value remains constant as a 1 and the non-complemented
variable if its value remains constant as a 0 along the entire square (ignoring the variables which
do not remain constant throughout the square) and then write them as a sumterm.

Various maxterm combinations and the corresponding reduced expressions are shown in
figure. In this f1 read as A because A remains constant as a 0 throughout the square and B
changes froma 0 to a 1. > is read as B‘ because B remains constant along the square as a 1 and
A changes fromaOtoal. fs
Is read as a 0 because both the variables are changing along the square.

Ex: Reduce the expression f=(A+B)(A+B‘)(A‘+B¢) using mapping.

The given expression in terms of maxterms is =ntM(0,1,3). It requires two gates inputs
for realization of the reduced expression as

L
F=AB"*

K-map in POS form and logic diagram

In this given expression ,the maxterm M is absent. This is indicated by a 1 on the k-map. The
corresponding SOP expression is Y. mz or AB*. This realization is the same as that for the POS
form.

Three-variable K-map:

A function in three variables (A, B, C) expressed in the standard SOP form can have eight
possible combinations: AB C, AB C,A BC ,A BC,AB C ,AB C,ABC, and ABC. Each one of these
combinations designate d by mO,m1,m2,m3,m4,m5m6, and m7, respectively, is called a
minterm. A is the MSB of the minterm designator and C is the LSB.

In the standard POS form, the eight possible combinations are:A+B+C, A+B+C ,
A+B +C,A+B +C ,A + B+ C,A +B +C ,A + B + C,A +B +C . Each oneof these combinations
designated by Mo, M1, M2, M3, M4, M5, M6, and M7respectively is called a maxterm. A is the
MSB of the maxterm designator and C is the LSB.

A three-variable k-map has, therefore, 8(=2%) squares or cells, and each square on the
map represents a minterm or maxterm as shown in figure. The small number on the top right
corner of each cell indicates the minterm or maxterm designation.

01

1
A+B+C

s
A+B+C
(b) Maxterms

The three-variable k-map.

The binary numbers along the top of the map indicate the condition of B and C for each
column. The binary number along the left side of the map against each row indicates the
condition of A for that row. For example, the binary number 01 on top of the second column in
fig indicates that the variable B appears in complemented form and the variable C in non-
complemented form in all the minterms in that column. The binary number 0 on the left of the
first row indicates that the variable A appears in complemented form in all the minterms in that
row, the binary numbers along the top of the k-map are not in normal binary order. They are,
infact, in the Gray code. This is to ensure that twophysically adjacent squares are really adjacent,
.., their minterms or maxterms differ by only one variable.

Ex: Map the expression f=: A BC+A BC +ABC+ABC +ABC

In the given expression , the minterms are : ABC=001=m; ; ABC=101=ms;
A BC =010=m;,

ABC =110=mg;ABC=111=m;.
So the expression is =Y m(1,5,2,6,7)= > m(1,2,5,6,7). The corresponding k-map is

K-map in SOP form

Ex: Map the expression f= (A+B+C),(A +B+C)(A +B+C)(A+B+C)(A +B +0)

In the given expression the maxterms are
:A+B+C=000=Mo;A + B + C =101=Ms5;4A + B+ C=111=M7; A+ B + C =011=M3;A + B +
C=110=Me.

So the expressionis == M (0,5,7,3,6)=7 M (0,3,5,6,7). The mapping of the expression is

K-map in POS form.

Minimization of SOP and POS expressions:

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look
at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the
minterms (maxterms) adjacent to each other, in order to combine them into larger squares.
Combining of adjacent squares in a k-map containing 1s (or 0s) for the purpose of simplification
of a SOP (or POS)expression is called looping. Some of the minterms (maxterms) may have
many adjacencies. Always start with the minterms (maxterm) with the least number of
adjacencies and try to form as large as large a square as possible. The larger must form a
geometric square or rectangle. They can be formed even by wrapping around, but cannot be
formed by using diagonal configurations. Next consider the minterm (maxterm) with next to the
least number of adjacencies and form as large a square as possible. Continue this till all the
minterms (maxterms) are taken care of . A minterm (maxterm) can be part of any number of
squares if it is helpful in reduction. Read the minimal expression from the k-map, corresponding
to the squares formed. There can be more than one minimal expression.

Two squares are said to be adjacent to each other (since the binary designations along
the top of the map and those along the left side of the map are in Gray code), if they are
physically adjacent to each other, or can be made adjacent to each other by wrapping around.
For squares to be combinable into bigger squares it is essential but not sufficient that their
minterm designations must differ by a power of two.

General procedure to simplify the Boolean expressions:

Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms) of the SOP
(POS) expression.
Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are isolated
minterms(maxterms) . They are to be read as they are because they cannot be combined
even into a 2-square.
Check for those 1s(0S) which are adjacent to only one other 1(0) and make them pairs (2
squares).
Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even if they contain
some 1s(0s) which have already been combined. They must geometrically form a square
or arectangle.
Check for any 1s(0s) that have not been combined yet and combine them into bigger
squares if possible.
Form the minimal expression by summing (multiplying) the product the product (sum)
terms of all the groups.

Reading the K-maps:

While reading the reduced k-map in SOP (POS) form, the variable which remains
constant as 0 along the square is written as the complemented (non-complemented) variable and
the one which remains constant as 1 along the square is written as non-complemented
(complemented) variable and the term as a product (sum) term. All the product (sum) terms are
added (multiplied).

Some possible combinations of minterms and the corresponding minimal expressions
readfrom the k-maps are shown in fig: Here fs is read as 1, because along the 8-square no
variable remains constant. Fsis read as A , because, along the 4-square formed by0,m;m> and
ms, the variables B and C are changing, and A remains constant as a 0. Algebraically,

fs= mo+my+mz+ms
=ABC+ABC+ABC +ABC
= AB(C +C)+A B(C+(C)

=AB+AB

=A (B+B)=4

BC
11 10 0w 01 11 10 A 00 01

o 3 — 2 1 3 2 1] 1
] 1 }'1%_!.# FT'*}H
1 °

7] 5 7
1_

f,=BC +AB + AC f,=AB +BC + AC

o1 11 10 00 oo
0 1 3 2 [

YT —
A=A —

1

i,=6+C

fzis read as C + B, because in the 4-square formed by m0,m2,m6, and m4, the variable A and B
are changing , where as the variable C remains constant as a 0. So it is read as C . In the 4-square

formed by mo, m1, m4, ms, A and C are changing but B remains constant as a 0. So it is read asB
. S0, the resultant expression for fs is the sum of these two, i.e., C + B.

fiisread as BC +A B+A C ,because in the 2-square formed by mgand ma, A is changing froma 0
to a 1. Whereas B and C remain constantas a 0. So it sread as B C . Inthe 2-square formed
by mo and my, C is changing from a 0 to a 1, whereas A and B remain constant as a 0. So it is
read as A B .In the 2-square formed by moand m; , B is changing froma 0 to a 1 whereas A
and C remain constant as a 0. So, it is read asA C . Therefore, the resultant SOP
expression is

BC +A B+BC

Some possible maxterm groupings and the corresponding minimal POS expressions read from
the k-map are

3 3

o

7°H 5 }
o] I I
(a) f, = (C)B) (b) f; = (A + B)(B + C)(A + C)

In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing froma 0 to
a 1, where as C remains constant as a 1. SO it is read as C . Along the 4-squad formed by Mg,
M2, M7, and M, variables A and C are changing from a 0 to a 1. But B remains constant as a 1.
So it is read as B. The minimal expression is the product of these two terms , i.e., fi = (C)(B).also
in this figure, along the 2-square formed by Mas and M6 , variable B is changing froma 0 to a 1,
while variable A remains constant as a 1 and variable C remains constant as a 0. SO, read it
as

A +C. Similarly, the 2-square formed by M7 andMg is read as A + B, while the 2-square formed
by M2 and Mg is read as B+C. The minimal expression is the product of these sum terms, i.e, f»
=(A + C)+(A + B)+(B +C)

Ex:Reduce the expression =) m(0,2,3,4,5,6) using mapping and implement it in AOI logic as
well as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal
expression using AOI logic and the corresponding NAND logic are shown in figures below

In SOP k-map, the reduction is done as:

ms has only one adjacency mas, so combine msand msinto a square. Along this 2-square
A remains constant as 1 and B remains constant as 0 but C varies from 0 to 1. So read it
as AB.

ms has only one adjacency m2, so combine mzand mz into a square. Along this 2-square
A remains constant as 0 and B remains constant as 1 but C varies from 1 to 0. So read it
as A B.

me can form a 2-square with m; and ms can form a 2-square with mo, but observe that by
wrapping the map from left to right mo, ms ,m2 ,me can form a 4-square. Out of these m;
andmM4 have already been combined but they can be utilized again. So make it. Along this
4-square, A is changing from 0 to 1 and B is also changing from:0 to 1 but C is remaining
constant as 0. so read it as C .

Write all the product terms in SOP form. So the minimal SOP expression is

A
B

5 7 x
‘ B
1 K 1

f= (=C+AB+AB g

k-map AOI logic NAND logic

BC
00 01 1 10
A L T 3

of 1 [1 1]2

Four variable k-maps:

Four variable k-map expressions can have 24=16 possible combinations of input variables such

-Mss respectively in POS form. It has 24=16 squares or cells.The binary number designations of
rows & columns are in the gray code. Here follows 01 & 10 follows 11 called Adjacency
ordering.

& 00 01 11 10

0 1 3 2

AB

00 [A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D

12

A+B+C+D

"

ABCD A+B+C+DA+B+C+D A+B+C+D

SOP form POS form
EX: Reduce using mapping the expression £ m(2, 3, 6, 7, 8, 10, 11, 13, 14).

Start with the minterm with the least number of adjacencies. The minterm m,;; has no
adjacency. Keep it as it is. The mg has only one adjacency, m,;,. Expand mg into a 2-square
with m,;,. The m; has two adjacencies, mg and m,;. Hence m; can be expanded into a
4-square with mg, m; and m,. Observe that, m,, m,;, m,, and m; form a geometric square.
The m,, has 2 adjacencies, m,, and m,. Observe that, m,;;,, m;;, m;, and m, form a
geometric square on wrapping the K-map. So expand m,, into a 4-square with m;;, m; and
m,. Note that, m, and m,;, have already become a part of the 4-square m,;, mg m,, and
m,. But if m,;, is expanded only into a 2-square with m,;, only one variable is eliminated.
So m, and m; are used again to make another 4-square with m,, and m,, to eliminate two
variables. Now only mg; and m,; are left uncovered. They can form a 2-squarec that
climinates only one variable. Don’t do that. See whether they can be expanded into a larger
square. Observe that, m,, mg m,,, and m;, form a rectangle. So mg and m,, can be
expanded into a 4-square with m, and m,,. This eliminates two variables.

" 1
[E]
0 [1o)

f=ABCD + ABD + AC + BC+ CD

Five variable k-map:

Five variable k-map can have 2° =32 possible combinations of input variable as
A BC DE,A BC DE, ms1 respectively in SOP &
A+B+C+D+E, A+B+C+D E , A + B + C + D +E with maxterms Mo,Mz,

M1 respectively in POS form. It has 2°=32 squares or cells of the k-map are divided into 2
blocks of

16 squares each.The left block represents minterms from mo to mss in which A is a 0, and the
right block represents minterms from mi t0o maz in which A is 1.The 5-variable k-map may
contain 2-squares, 4-squares , 8-squares , 16-squares or 32-squares involving these two blocks.
Squares are also considered adjacent in these two blocks, if when superimposing one block on
top of another, the squares coincide with one another.

Some possible 2-squares in a five-variable map are my, mg;
ms, My); My, My,

Some possible 4-squares are mgy, m,, m;q myg;
my3, Mys, Myy, My, Mg, My, My, My

Some possible 8-squares are my, m;, m;, my, My My, Mg My
Mg, Mg, Mg My Mg, My Myy, Mys, My, My;, My, My,

m,, Mg Mg, My

My, My, Mg, My, My, My, Mg My,
my, My, My, Mg,
The squares are read by dropping out the variables which change. Some possible

Grouping s is

(a) mg,

(b)
(c)

m,,

my,

My =
mg
my,

(d) ms, m,,
myg, My, = CE

(e) mg, mg, my, my,;, My, My,
Mye, My; = BC

m;s, My, Mpy3,

0

DE
B‘NOO o1_11__10

-
-—

01

=
"

10 | ~

Ex: F=Ym(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP
POS is F=ntM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)

The real minimal expression is the minimal of the SOP and POS forms.
The reduction is done as

There is no isolated 1s

Mz2 can go only with mys. Form a 2-square which is read as A‘BCD¢

Mo can go with mz,ms and myg . so forma 4-square which isread as B‘C‘E*
Mao,m21,m17 and mye form a 4-square which is read as AB‘D°
M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d

Write all the product terms in SOP form.
So the minimal expression is

Frmin= A‘BCD*+B*C‘E*+AB‘D*+C*D(16 inputs)

DE 0

BC 00 01
[} 1
00 |1

. s
o1

13

1 1 1"

° "
10 U - C— 10

f=ABCD + BCE + ABD + CD

In the POS k-map ,the reduction is done as:

1. There are no isolated 0s

M, can go only with M. So, make a 2-square, which is read as (A + B + D + E).
3 M, can go with M, M,, and M to form a 4-square, which is read as (A + B + C).

4.Mg

5. Mzsg

6.M3o

7. Sum terms in POS form. So the minimal expression in POS is

Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D

I=(A+B+D+EXA+B+TCYB+C+D)YA+B+DXC+D)

Six variable k-map:

Six variable k-map can have 2% =64 combinations as A BC DEF,A BC DEF,
---ABCDEF with minterms mo, mz-----me3 respectively in SOP & (A+B+C+D+E+F),
+ B + C+ D +E + F) with maxterms Mo,My, Mes respectively in POS form. It has
2%=64 squares or cells of the k-map are divided into 4 blocks of 16 squares each.

11

5]

);—'\\ﬁ =

Some possible groupings in a six variable k-map

Don’t care combinations:For certain input combinations, the value of the output is unspecified
either because the input combinations are invalid or because the precise value of the output is of
no consequence. The combinations for which the value of experiments are not specified are
called don‘t care combinations are invalid or because the precise value of the output is of no
consequence. The combinations for which the value of expressions is not specified are called
don‘t care combinations or Optional Combinations, such expressions stand incompletely
specified. The output is a don‘t care for these invalid combinations.

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are unspecified. &
never occur called don‘t cares.

A standard SOP expression with don‘t cares can be converted into a standard POS
form by keeping the don‘t cares as they are & writing the missing minterms of the SOP form as
the maxterms of the POS form viceversa.

Don‘t cares denoted by _X* or _o°

Ex:f=Ym(1,5,6,12,13,14)+d(2,4)

Or f=1 M(0,3,7,9,10,11,15).2d(2,4)

SOP minimal form fmin= BC +BD+A CD

POS minimal form fmin=(B+D)(4 +B)(C +D)

= B+D +A+B +(C+D

0

4

11

N2

10

1,

(a)f=8BC + BD + ACD

o7

(b)f=(B+ D)A +B)YC + D)

) D
e =
J

(c) NOR logic

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of
these subcubes is called a Prime implicant (PI). The PI which contains at leastone which cannot
be covered by any other prime implicants is called as Essential Prime implicant (EPI).The PI
whose each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A PI
which is neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is

F(A,B,C,D)=A CD+ABC+AC D +A BC

The RPI _BD* may be included without changing the function but the resulting expression would
not be in minimal SOP(MSP) form.

cD

AB

EP1-._ 00
EBC\"\ N

o

11

EPI

acp '°

Essential and Redundant Prime Implicants

F(A,B,C,D)=>m(0,4,5,10,11,13,15) SPI are marked by dotted squares, shows
MSP form of a function need not be unique.

3

T

s 5P
T ABD
1 e SPI
e

1 — EPI

ABC

Essential and Selective Prime Implicants

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s to cover
remaining uncovered minterms 5,13,15. & these can be covered as

(A) (4,5) &(13,15) ABC +ABD
(B) (5,13) & (13,15) BC D+ABD
(C) (5,13) & (15,11) BC D+ACD

F(A,B,C,D)=A C D+ABC EPI‘s +A BC +ABD
(OR) F(A,B,C,D)=A C D+ABC EPI‘s + BC D+ABD
(OR) F(A,B,C,D)=A C D+ABC EPI‘s + BC D+ACD
False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s:

The maxterms are called falseminterms. The PI‘s is obtained by using the maxterms are
called False PI‘s (FPI). The FPI which contains at least one _0° which can‘t be covered by only
other FPI is called an Essential False Prime implicant (ESPI)

F(A,B,C,D)= ¥m(0,1,2,3,4,8,12)
—1 M(5,6,7,9,10,11,13,14,15)

Fmin= (B+C)(A +C)(A + D)(B+D)

All the FPI, EFPI‘s as each of them contain atleast one _0° which can‘t be covered by any other
FPI

A+ D

Essential False Prime implicants
Consider Function F(A,B,C,D)=n M(0,1,2,6,8,10,11,12)
CD

AB
00

|10
D-
0 bs

14

2

___10
[0 EFPI
]

A+B+C

Essential and Redundant False Prime Implicants
Mapping when the function is not expressed in minterms (maxterms):

An expression in k-map must be available as a sum (product) of minterms (maxterms). However
if not so expressed, it is not necessary to expand the expression algebraically into its minterms
(maxterms). Instead, expansion into minterms (maxterms) can be accomplished in the process of
entering the terms of the expression on the k-map.

Limitations of Karnaugh maps:

e Convenient as long as the number of variables does not exceed six.
e Manual technique, simplification process is heavily dependent on the humanabilities.

Quine-Mccluskey Method:

It also known as Tabular method. It is more systematic method of minimizing expressions
of even larger number of variables. It is suitable for hand computation as well as computation by
machines i.e., programmable. . The procedure is based on repeated application of the combining
theorem.

PA+PA =P (P is set of literals) on all adjacent pairs of terms, yields the set of all P1‘s from which
a minimal sum may be selected.

Consider expression

Ym(0,1,4,5)= A BC +A BC+ABC +ABC

First, second terms & third, fourth terms can be combined
AB(C + C)+AB(C+C)=A B +AB

Reduced to

B(A + A)=B

The same result can be obtained by combining mo& ms & mi&ms in first step & resulting terms
in the second step .

Procedure:

Decimal Representation
Don‘t cares
Pl chart
EPI
Dominating Rows & Columns
e Determination of Minimal expressions in comples cases.

Branching Method:

EXAMPLE 3.29 Obtain the set of prime implicants for the Boolean expression

f=Xm(0,1,6,7,8,9, 13, 14, 15) using the tabular method.
Solution

Group the minterms in terms of the number of s present in them and write their binary
designations. The procedure to obtain the prime implicants is shown in Table 3.3.

Table 3.3 Example 3.29

Column 1 Column 2 Column 3
Minterm Binary designation ABCD ABCD

Index 0 0 0000V 0,1(1) 000- v 0,1,89(1,8)-00-Q
Index | l 0001V 0.8(8) ~-000V
8 1000v 1,98 -001 Vv
Index 2 0110v 8.9(h 100-v 67, 14,15(1,8)-11-P
1001V 6,7(1) 011~V
Index 3 0111V 6. 14 (8) 110V
1101/ 9.13(4) -01S
1110/ 7, 15(8) 111 v
Index 4 . 1111v 13, 15(2) l1-1R
14,15 (1) 11 -V

Comparing the terms of index 0 with the terms of index 1 of column 1, m (0000) is combined
with m (0001) to yield 0, 1 (1), i.e. 000 -, This is recorded in column 2 and 0000 and 0001 are
checked off in column 1. m (0000) is combined with my(1000) to yield 0, 8 (8), i.e. — 000. This is
recorded in column 2 and 1000 is checked off in column 1. Note that 0000 of column 1 has already
been checked off. No more combinations of terms of index 0 and index 1 are possible. So, draw a
line below the last combination of these groups, i.e. below 0, 8 (8), — 000 in column 2. Now 0, 1
(1), i.e. 000 — and 0, 8 (8), i.e. — 000 are the terms in the first group of column 2.

Comparing the terms of index | with the terms of index 2 in column I, m (0001} is combined
with my(1001) to yield 1, 9 (8), i.e. = 001. This is recorded in column 2 and 1001 is checked off in
column | because 0001 has already been checked off. my(1000) is combined with my(1001) to
yield 8, 9 (1), i.e. 100 —, This is recorded in column 2, 1000 and 1001 of column | have already
been checked off. So, no need to check them off again. No more combinations of terms of index 1
and index 2 are possible. So, draw a line below the last combination of these groups, i.e. 8, 9 (1),

-—001 in column 2. Now 1,9 (8),1.e.- 001 and 8, 9 (1), i.e. 100~ are the terms in the second group
of column 2.
Similarly, comparing the terms of index 2 with the terms of index 3 in column 1,
m,(0110) and m,(0111) yield 6, 7 (1), i.e. 011-. Record it in column 2 and check off
6(0110) and 7(0111).
m,(0110) and m,,(1110) yield 6, 14 (8), i.e. =110. Record it in column 2 and check off
6(0110) and 14(1110).
my(1001) and m;(1101) yield 9, 13 (4), i.e. 1-01. Record it in column 2 and check off
9(1001) and 13(1101). -
S0,6,7(1),i.c. 011-, and 6, 14 (8), i.e. =110 and 9, 13 (4), i.e. 1-01 are the terms in group 3 of
column 2. Draw a line at the end of 9, 13 (4), i.c. 1-01.
Also, comparing the terms of index 3 with the terms of index 4 in column 1,
m,(0111) and m ((1111) yield 7, 15 (8), i.e. =111. Record it in column 2 and check off
7(0111) and 15(1111).
m,,(1101) and m (1 111) yield 13, 15 (2), i.e. 11-1. Record it in column 2 and check off
13 and 15.
m,(1110) and m ((1111) yield 14, 15 (1), i.e. 111-. Record it in column 2 and check off
14 and 15.
So,7,15(8),i.e. =111, and 13, 15 (2), i.e. 11-1 and 14, 15 (1), i.e. 111~ are the terms in group 4
of column 2. Column 2 is completed now.

Comparing the terms of group 1 with the terms of group 2 in column 2, the terms 0, 1 (1), i.e.
000 and 8, 9 (1), i.e. 100~ are combined to form 0, 1, 8,9 (1, 8), i.e. <00-. Record it in group 1 of
column 3 and check off 0, 1 (1), i.e. 000—, and &, 9 (1), i.e. 100- of column 2. The terms 0, & (8),
i.e. =000 and 1, 9 (8), i.e. <001 are combined to form 0, 1, 8, 9 (1, 8), i.e. <00—. This has already
been recorded in column 3. So, no need to record again. Check off 0, 8 (8), i.e. 000 and 1, 9 (8),
i.e. =001 of column 2. Draw a line below 0, 1, 8, 9 (1, B), i.e. =00-. This is the only term in group 1
of column 3. No term of group 2 of column 2 can be combined with any term of group 3 of
column 2, So, no entries are made in group 2 of column 2.

Comparing the terms of group 3 of column 2 with the terms of greup 4 of column 2, the
terms 6, 7 (1), i.e. 011-, and 14, 15 (1), i.e. 111- are combined to form 6, 7, 14, 15 (1, 8), i.e.
—11-. Record it in group 3 of column 3 and check off 6, 7 (1), i.e. 011-and 14, 15(1),i.e. 111=-of
column 2. The terms 6, 14 (8), i.e. =110 and 7, 15 (8), i.e. =111 are combined to form 6, 7, 14, 15
(1, 8), i.e. —11—. This has already been recorded in column 3; so, check off 6, 14 (8), i.e. =110 and
7,15 (8), i.e. =111 of column 2.

Observe that the terms 9, 13 (4), i.e. 1-01 and 13, 15 (2), i.e. 11=1 cannot be combined with
any other terms. Similarly in column 3, the terms 0, 1, 8,9 (1, 8), i.e. -00-and 6, 7, 14, 15 (1, 8),
i.e. =11-cannot also be combined with any other terms. So, these 4 terms are the prime implicants.

The terms, which cannot be combined further, are labelled as F, Q, R, and 5. These form the
set of prime implicants.

EX:
Obtain the minimal expression for f = £ m(l, 2, 3,5, 6,7, 8, 9, 12,

13, 15) using the tabular method.

Solution
The procedure to obtain the set of prime implicants is illustrated in Table 3.4.

Table 3.4 Example 3.30

Step 1 Step 2 Step 3

LI 1,3,5,7(2,4)
LS 1,5,9,13 (4, 8)
OB 2,3,6,7(1.4)
L3 8.9, 12, 13 (1, 4)
6 (4} v 5,7, 13,15(2.8)
L9 (1
L 12 (4) v

LT ()
T2y
L 13 (8) v
LT ()

9. 13 (4«

12, 13 (1)«

7. 15(B) v

13, 15(2) v

Index 1

—

Index 2

b

(- - -

Index 3

LA Lh

Index 4

=4

The non-combinable terms P, Q, R, S and T are recorded as prime implicants.
P—5713,152.8=X1X1=BD

(Literals with weights 2 and 8, i.e. C and A are deleted. The lowest minterm is my(5 =4 + 1). So,
literals with weights 4 and 1, i.e. B and D are present in non-complemented form. So, read it as BD.)

Q—58912,13(1,4)=1X0X=AC

(Literals with weights 1 and 4, i.e. D and B are deleted. The lowest minterm is mg. So, literal with
weight 8 is present in non-complemented form and literal with weight 2 is present in complemented

form. So, read it as AC.)
R—2,3,67(,4=0X1X=AC

(Literals with weights 1 and 4, i.e. D and B are deleted. The lowest minterm is m,. So, literal with
weight 2 is present in non-complemented form and literal with weight 8 is present in complemented

form. So, read it as AC.)
$—1,59134.8)=XX01=CD

(Literals with weights 4 and 8, i.e. B and A are deleted. The lowest minterm is m,. So, literal with
weight 1 is present in non-complemented form and literal with weight 2 is present in complemented

form. So, read it as CD.)

T—=1,3,57(2,4)=0XX1=AD

(Literals with weights 2 and 4, i.e. C and B are deleted. The lowest minterm is 1. So, literal with
weight 1 is present in non-complemented form and literal with weight 8 is present in complemented

form. So, read it as AD.)
The prime implicant chart of the expression

f=Xm(l,23,56,7,8,9, 12, 13, 15)

is as shown in Table 3.5. It consists of 11 columns corresponding to the number of minterms and 5
rows corresponding to the prime implicants P, Q, R, S, and T generated. Row R contains four xs at
the intersections with columns 2, 3, 6, and 7, because these minterms are covered by the prime
implicant R. A row is said to cover the columns in which it has xs. The problem now is to select a
minimal subset of prime implicants, such that each column contains at least one x in the rows
corresponding to the selected subset and the total number of literals in the prime implicants selected
is as small as possible. These requirements guarantee that the number of unions of the selected
prime implicants is equal to the original number of minterms and that, no other expression containing
fewer literals can be found.

Table 3.5 Example 3.30: Prime implicant chart

v v v v v v

2 3 6 7 8
*P—5,7,13,15(2,8) x
*Q—8,9,12,13(1,4)
*R—2.3,6,7(1,4)
S—1,509,13(4.8)
T—1,3,57(2,4)

In the prime implicant chart of Table 3.5, m, and m, are covered by R only. So, R is an essential
prime implicant. So, check off all the minterms covered by it, i.e. m,, m;, m., and m,. Q is also an
essential prime implicant because only Q covers mg and m,,. Check off all the minterms covered
by it, i.e. mg, my, m,, and m 4. P is also an essential prime implicant, because m 4 is covered only
by P. So check off m, q, Mg, M,, and m , covered by it. Thus, only minterm | is not covered. Either
row S or row T can cover it and both have the same number of literals. Thus, two minimal expressions
are possible.

P+Q+R+S=BD+AC+AC+CD
P+Q+R+T=BD+AC+AC+ AD

Combinational Logic Design

Logic circuits for digital systems may be combinational or sequential. The output of a
combinational circuit depends on its present inputs only .Combinational circuit processing
operation fully specified logically by a set of Boolean functions .A combinational circuit consists
of input variables, logic gates and output variables.Both input and output data are represented by
signals, i.e., they exists in two possible values. One is logic —1 and the other logic 0.

UNIT lll: Combinational logic circuits design

Combinational

n inputs : 3
P circuit

m outputs

Fig. Block Diagram of Combinational Circuit

For n input variables,there are 2" possible combinations of binary input variables .For
each possible input Combination ,there is one and only one possible output combination.A
combinational circuit can be described by m Boolean functions one for each output
variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1. The problem is stated

2. The number of available input variables and required output variables is determined.
3.The input and output variables are assigned letter symbols.

4.The truth table that defines the required relationship between inputs and outputs is derived.
5.The simplified Boolean function for each output is obtained.

6.The logic diagram is drawn.

Adders:

Digital computers perform variety of information processing tasks,the one is arithmetic
operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic
possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and addend
bits are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is
called a carry.A combinational circuit that performs the addition of two bits is called a half-
adder. One that performs the addition of 3 bits (two significant bits & previous carry) is called a
full adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and
addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and
produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single
bit words.

A s
e Half-adder c.

(a) Truth table (b) Block diagram

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the
X-OR of A and B (It represents the LSB of the sum). Therefore,

S=AB+AB=A@B
The carry (C) is the AND of A and B (it is O unless both the inputs are 1).Therefore,
C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

B
|/

=]

Logic diagrams of half-adder

NAND LOGIC:

Logic diagram of a half-adder using only 2-input NAND gates.
NOR Logic:

S=AB+AB=AB+AA + AB + BB
=A{E+E]+B{E+E}

={A+B)}A+ B)

Logic diagram of a half-adder using only 2-input NOR gates.

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum
bit and a carry bit. To add two binary numbers, each having two or maore bits, the LSBs can be
added by using a half-adder. The carry resulted from the addition of the LSBs is carried over to
the next significant column and added to the two bits in that column. So, in the second and
higher columns, the two data bits of that column and the carry bit generated from the addition in
the previous column need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the
carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S
gives the value of the least significant bit of the sum. The variable Coutgives the output carry.The

eight rows under the input variables designate all possible combinations of 1s and Os that these
variables may have. The 1s and Os for the output variables are determined from the arithmetic
sum of the input bits. When all the bits are Os , the output is 0. The S output is equal to 1 when
only 1 input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or
three inputs are equal to 1.

Full-adder

Y Y1 -1-1
o -I-EY-1-11

{a) Truth table (b) Block diagram
Full-adder.

From the truth table, a circuit that will produce the correct sum and carry bits in response to
every possible combination of A,B and Ci, is described by

S = ABCin+ ABCin+ ABCin+ ABCin
Cout= ATBCin—F AB_Cin+ ABC;-F ABCin

S=A® B ® Cin
Cot= ACin+ BCin+ AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo
sum of the data bits in that column and the carry from the previous column. The logic diagram
of the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR
gate is

=1

i (A @ B)C,,
| D)) Spmmemene

LT ST P

Logic diagram of a full-adder using two half-adders.
The block diagram of a full-adder using two half-adders is -
A AB C_, = (A @ B)C,, + AB
a HA AE B
HA S=A®B&C,
Ca L
Block diagram of a full-adder using two half-adders.

Even though a full-adder can be constructed using two half-adders, the disadvantage is that the
bits must propagate through several gates in accession, which makes the total propagation delay
greater than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or
only NOR gates as

A®B=A-AB-B-AB

S=A®@B®C, = (A®B)-(A®B)C, -C, - (A @B)C,

NAND Logic:

=C, (A®B)+AB= C,_(A®B)-AB
— N\
L-/

Sum and carry bits of a full-adder using AOI logic.

Bl
IS arRt

Logic diagram of a full-adder using only 2-input NAND gates.

NOR Logic:

ADB=(A+B)+A+B

S=A®B&®C, = (ADB)+C,, +(A®B)+Cin

Cou=AB+C,(ADBB)= A+B+Cin +ADB

ADB

A —

T o

Logic diagram of a full-adder using only 2-input NOR gates.

Subtractors:

The subtraction of two binary numbers may be accomplished by taking the complement
of the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an
addition operation and instead of having a separate circuit for subtraction, the adder itself can be
used to perform subtraction. This results in reduction of hardware. In subtraction, each
subtrahend bit of the number is subtracted from its corresponding significant minuend bit to form
a difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the
next significant position., that has been borrowed must be conveyed to the next higher pair of
bits by means of a signal coming out (output) of a given stage and going into (input) the next
higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from the other and
produces the difference. It also has an output to specify if a 1 has been borrowed. . It is used to
subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is
subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two
outputs d and b. d indicates the difference and b is the output signal generated that informs the
next stage that a 1 has been borrowed. When a bit B is subtracted from another bit A, a
difference bit (d) and a borrow bit (b) result according to the rules given as

—e d

Half-subtractor
B— —= b

{a) Truth table ({b) Block diagram
Half-subtractor.

The output borrow b is a 0 as long as A>B. It isa 1 for A=0 and B=1. The d output is the result
of the arithmetic operation 2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every possible
combination of the two 1-bit numbers is , therefore ,

d=AB+AB=A®B and h=4A B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained
by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly
the same as the logic for output S in the half-adder.

A —

B),
|/

Logic diagrams of a half-subtractor.

A half-substractor can also be realized using universal logic either using only NAND gates or
using NOR gates as:

NAND Logic:

B-AB
Logic diagram of a half-subtractor using only 2-input NAND gates.

NOR Logic:

d=A®B=AB+AB=AB+BB+AB +AA

=B(A+B)+A(A+B)=B+A+B+A+A+B

d=AB=A(A+B)= A(A+B)=A +(A +B)

Logic diagram of a half-subtractor using only 2-input NOR gates.

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow
during the subtraction of the LSBs, it affects the subtraction in the next higher column; the
subtrahend bit is subtracted from the minuend bit, considering the borrow from that column used
for the subtraction in the preceding column. Such a subtraction is performed by a full-subtractor.
It subtracts one bit (B) from another bit (A) , when already there is a borrow b; from this column
for the subtraction in the preceding column, and outputs the difference bit (d) and the borrow
bit(b) required from the next d and b. The two outputs present the difference and output borrow.
The 1s and Os for the output variables are determined from the subtraction of A-B-b.

Inputs Difference Bomow
B N d b

B —

B—— Full-subtractor

b.l—l-

(a) Truth table (b) Block diagram
Full-subtractor.

g gy === X=]1 -
= P

From the truth table, a circuit that will produce the correct difference and borrow bits in response
to every possiblecombinations of A,B and bj is
d=ABb, + ABb, + ABb, + ABb,
=b,(AB + AB) +b,(AB + AB)
=b(A@®B)+ b(A@B)=A®B @b,

b= ABb, + ABb, + ABb, + ABb, = AB(b, + b,) + (AB + AB)b,
=AB +(A®B)b,

A full-subtractor can be realized using X-OR gates and AOI gates as

[) >—

Logic diagram of a full-subtractor.

The full subtractor can also be realized using universal logic either using only NAND gates or
using NOR gates as:

NAND Logic:

d=A®B@&b,= (ADB)® b, =(A®B)}A © B)b, -b,(A @ Blb,

b=AB +b(A&@B)= AB+b(A & B)

AB-b,(A @ B) = B(A + B) - b, (b, + (A @ B)]

B-AB-b[b, - (A @ B)]

Bl
oo |

Logic diagram of a full-subtractor using only 2-input NAND gates.

NOR Logic:

d=ADB®b=(ADB)@b,

= (A®B)b; + (A@B)b,

= [(A @ B) + (A ®B)b,][b; + (A ® B)b,]

=(ADB)+(A®B)+b; +b; +(ADB) +b,

=(A@®B)+(A®B)+b;, +b, +(A®B) +b,
b=AB+b(A®B)
=A(A+B)+(A@B)[(A®B)+b]

=A+(A+B)+(A@B)+(A®B)+b,

Logic diagram of a full subtractor using only 2-input NOR gates.

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in parallel form
and produces the arithmetic sum of those numbers in parallel form. It consists of full adders
connected in a chain , with the output carry from each full-adder connected to the input carry of
the next full-adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The
augends bits of A and addend bits of B are designated by subscript numbers from right to left,
with subscript 1 denoting the lower —order bit. The carries are connected in a chain through the
full-adders. The input carry to the adder is Cin and the output carry is Cs. The S output generates

the required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has
four terminals for the augends bits, four terminals for the addend bits, four terminals for the sum
bits, and two terminals for the input and output carries. AN n-bit parallel adder requires n-full
adders. It can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several
packages. The output carry from one package must be connected to the input carry of the one
with the next higher —order bits. The 4-bit full adder is a typical example of an MSI function.

8, S; =F
Logic diagram of a 4-bit binary parallel adder.

Ripple carry adder:

In the parallel adder, the carry —out of each stage is connected to the carry-in of
the next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after
the carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry,

which lead to a time delay in the addition process. The carry propagation delay for each full-
adder is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA; are not valid, until
after the propagation delay of FA:. Similarly, the sum Sz and carry-out (C>) bits given by FA; are
not valid until after the cumulative propagation delay of two full adders (FA1 and FA) , and so
on. At each stage ,the sum bit is not valid until after the carry bits in all the preceding stages are
valid. Carry bits must propagate or ripple through all stages before the most significant sum bit is
valid. Thus, the total sum (the parallel output) is not valid until after the cumulative delay of all
the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next most
significant adder is called a ripple carry adder.. The greater the number of bits that a ripple carry
adder must add, the greater the time required for it to perform a valid addition. If two numbers
are added such that no carries occur between stages, then the add time is simply the propagation
time through a single full-adder.

4- Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of
complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding
itto A . The 2°s complement can be obtained by taking the 1‘s complement and adding 1 to the

least significant pair of bits. The 1‘s complement can be implemented with inverters as

N

FA,

FA,

| l :

S‘H 52 5'
Logic diagram of a 4-bit parallel subtractor.

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into
one circuit with one common binary adder. This is done by including an X-OR gate with each
full-adder. The mode input M controls the operation. When M=0, the circuit is an adder, and
when M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the
inputs of B. When M=0, E®0=B The full-adder receives the value of B , the input carry is 0

and the circuit performs A+B. when Bo1=B' and Ci=1. The B inputs are complemented

and a 1 is through the input carry. The circuit performs the operation A plus the 2‘s complement
of B.

FhA, FA, FA,

} !]

Sy Sz Sy

Logic diagram of a 4-bit binary adder-subtractor.

The Look-Ahead —Carry Adder:

In parallel-adder,the speed with which an addition can be performed is governed by
the time required for the carries to propagate or ripple through all of the stages of the adder. The
look-ahead carry adder speeds up the process by eliminating this ripple carry delay. It examines
all the input bits simultaneously and also generates the carry-in bits for all the stages
simultaneously.

The method of speeding up the addition process is based on the two additional
functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as shown in fig.
we know that is made by two half adders and that the half adder contains an X-OR gate to
produce the sum and an AND gate to produce the carry. If both the bits A, and Bnare 1s, a carry
has to be generated in this stage regardless of whether the input carry Cinis a 0 or a 1. This is
called generated carry, expressed as Gn= An.Bn Which has to appear at the output through the OR
gate as shown in fig.

AB,=G

o Cpur = Con= (A, ®B,C, + AB,
A BB,=P,

HA S,=A,®B,8C,

A full adder (nth stage of a parallel adder).

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it P, —which is expressed as P,=A,@8,

Next P, and C, are added using the X-OR gate inside the second half adder to produce the final

. S =P ®&C whereP =A & B .
sum bit and n o n b= A B ang output carryCo= Pr.Co=(Ax® B,)C, which

becomes carry for the (n+1) th stage.

Consider the case of both P,and C, being 1. The input carry Cy has to be propagated
to the output only if Pnis 1. If Pyis O, even if Cy is 1, the and gate in the second half-adder will
inhibit C,, . the carry out of the nth stage is 1 when either Gy=1 or Pn.C,, =1 or both Gnand P,.Cn
are equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean
expressions.

5 =P @&C whereP =A @&B,
C = C = Grl + P:JCrI Wh':ﬂ: Grl = .A.” ' B.ﬁ

of “n+l

Observe the recursive nature of the expression for the output carry
at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to express the
output carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

C,=G,+F,-C,

C,=G, +P -C,=G +P -Gy+P -P,-C,
C,=G,+P,-C,=G,+P, G, +P,-P -Gy +P,- P, - P, - C
C_,=G_..|-}—F"_,‘-l133=ll]_,.+]:’_..I . II]_,_+P_i . PE-G|+F_,| . F':- F! -GU+F'_,.-P:-P| -P“-C‘]
The general expression for n stages designated as 0 through (n - 1) would be

Cir = Grr—l + Pﬂr—l) Cu—l = l::;r:—l + PPJ—I . Gn—? + Pr|—|) P) G 3 + o ¥ Pn—] L Pl]) C[F

-2 -

Observe that the final output carry is expressed as a function of
the input variables in SOP form. Which is two level AND-OR or equivalent NAND-NAND
form. Observe that the full look-ahead scheme requires the use of OR gate with (n+1) inputs and
AND gates with number of inputs varying from 2 to (n+1).

Look-ahead-carnry
geanarator

Gy

c,

Logic diagram of a 4-bit look-ahead-carry adder,
2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2°s complement system to represent negative numbers
and to perform subtraction operations of signed numbers can be performed using only the
addition operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2‘s complement. This
adder/subtractor circuit is controlled by the control signal ADD/SUB‘. When the ADD/SUB®
level is HIGH, the circuit performs the addition of the numbers stored in registers A and B.
When the ADD/Sub* level is LOW, the circuit subtract the number in register B from the number
in register A. The operation is:

When ADD/SUB“ isa 1:

1 AND gates 1,3,5 and 7 are enabled , allowing Bo,B1,B>and B3 to pass to the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking Bo‘,B1‘,B2‘, and B3 from
reaching the OR gates 9,10,11 and 12.

The two levels Bo to B3 pass through the OR gates to the 4-bit parallel adder, to be added
to the bits Aoto Az The sum appears at the output Se to Sz

3. Add/SUB°‘ =1 causes no carry into the adder.

When ADD/SUB*‘ isa 0:

1 AND gates 1,3,5 and 7 are disabled , allowing Bo,B1,B;and Bz from reaching the OR
gates 9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking Bo‘,B1°,B2‘, and Bs‘
from reaching the OR gates.

The two levels Bo® to Bs® pass through the OR gates to the 4-bit parallel adder, to be
added to the bits Aoto As The Cois now 1.thus the number in register B is converted to
its 2°s complement form.

3. The difference appears at the output Spto Ss.

Adders/Subtractors used for adding and subtracting signed binary numbers. In computers , the
output is transferred into the register A (accumulator) so that the result of the addition or
subtraction always end up stored in the register A This is accomplished by applying a transfer
pulse to the CLK inputs of register A.

3| Sz S4[Se

logic diagram of a paraliel adder/subtractor using 2's complement system.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to be
added serially are stored in two shift registers A and B. Bits are added one pair at a time through
a single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to a D flip-
flop. The output of this flip-flop is then used as the carry input for the next pair of significant
bits. The sum bit from the S output of the full-adder could be transferred to a third shift register.
By shifting the sum into A while the bits of A are shifted out, it is possible to use one register for
storing both augend and the sum bits. The serial input register B can be used to transfer a new
binary number while the addend bits are shifted out during the addition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop is
cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x
and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both
registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and
the output carry is transferred into flip-flop Q . The shift control enables the registers for a
number of clock pulses equal to the number of bits of the registers. For each succeeding clock
pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are
shifted once to the right. This process continues until the shift control is disabled. Thus the
addition is accomplished by passing each pair of bits together with the previous carry through a
single full adder circuit and transferring the sum, one bit at a time, into register A.

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is
added from B. While B is shifted through the full adder, a second number is transferred to it
through its serial input. The second number is then added to the content of register A while a
third number is transferred serially into register B. This can be repeated to form the addition of
two, three, or more numbers and accumulate their sum in register A.

Lst

Shift register A

Shift register B

—\\ c:mar_?
Y

Logic diagram of a serial adder.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift
registers. The number of full adder circuits in the parallel adder is equal to the number of bits in
the binary numbers, whereas the serial adder requires only one full adder circuit and a carry flip-
flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the serial

adder is a sequential circuit. The sequential circuit in the serial adder consists of a full-adder and
a flip-flop that stores the output carry.

BCD Adder:
The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using ordinary binary
addition.

For those positions where the sum is 9 or less, the sum is in proper BCD form and no
correction is needed.

When the sum of two digits is greater than 9, a correction of 0110 should be added to
that sum, to produce the proper BCD result. This will produce a carry to be added to
the next decimal position.

A BCD adder circuit must be able to operate in accordance with the above steps. In other words,
the circuit must be able to do the following:

1. Add two 4-bit BCD code groups, using straight binaryaddition.

2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is, add 0110
(decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such as the 74L.S83
IC .For example , if the two BCD code groups AszA>A1Acand B3B2B1Bo are applied to a 4-bit
parallel adder, the adder will output S4S3S2S1So, where Ss is actually C4, the carry —out of the
MSB bits.

The sum outputs S4S3S2S1So can range anywhere from 00000 to 100109when both the
BCD code groups are 1001=9). The circuitry for a BCD adder must include the logic needed to
detect whenever the sum is greater than 01001, so that the correction can be added in. Those
cases , where the sum is greater than 1001 are listed as:

8 4 8 s 51 ! Sn Decimal number
0 0 10
0

0 |

0 1 1 1l

0 | 0 12

0 | 1 13

0 1

0 1 1

| 0] 16

1 0 1 17
0

1 0 15

(14
15

Let us define a logic output X that will go HIGH only when the sum is greater than 01001
(i.e, for the cases in table). If examine these cases ,see that X will be HIGH for either of the
following conditions:

1. Whenever S4=1(sum greater than 15)

2. Whenever S3=1 and either Sz or Sy or both are 1 (sum 10 to 15)

This condition can be expressed as
X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to
generate a carry. The circuit consists of three basic parts. The two BCD code groups AzA2A1Aq
and BsB2B1Bo are added together in the upper 4-bit adder, to produce the sum S4S3S,S1So. The
logic gates shown implement the expression for X. The lower 4-bit adder will add the correction
0110 to the sum bits, only when X=1, producing the final BCD sum output represented by
Y3Y 2> 1> 0. The X is also the carry-out that is produced when the sum is greater than 01001.

When X=0, there is no carry and no addition of 0110. In such cases, Y 3> 2> 1> 0= S3S2S1So.

Two or more BCD adders can be connected in cascade when two or more digit decimal
numbers are to be added. The carry-out of the first BCD adder is connected as the carry-in of the
second BCD adder, the carry-out of the second BCD adder is connected as the carry-in of the
third BCD adder and so on.

B, B. B, B

+ 1 4 3

<4-bit parallel adder (74LS83)

T T 1 71

Ss| Sz2| Sy Se As A A, A

x
Carry to the =
next BCD adder

4-bit paraliel adder (74LS83

LI L T

=,

BCD sum adder

Logic diagram of a BCD adder using two 4-bit adders and a correction-detector circuit.

EXCESS-3(XS-3) ADDER:

To perform Excess-3 additions,
1. Add two xs-3 code groups
2. Ifcarry=1, add 0011(3) to the sum of those two code groups
If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two code
groups.
Ex: Add 9 and 5
1100 9in Xs-3
5in xs-3

there is a carry
add 3 to each group

14 in xs-3

4in XS-3
3in X5-3
no carry
+1 101 Subtract 3 (i.e. add 13)
Ignorecarry 1 1010 7inX5-3
(7)

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (As
A2A1A0) and addend (B3B2B1Bo) in xs-3 are added using the 4-bit parallel adder. If the carry is a
1, then 0011(3) is added to the sum bits S3S2S1Se of the upper adder in the lower 4-bit parallel

adder. Ifthe carryis a 0, then 1101(3) is added to the sum bits (This is equivalent to subtracting
0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:
To perform Excess-3 subtraction,
1. Complement the subtrahend
2. Add the complemented subtrahend to the minuend.
3. [Ifcarry =1, result is positive. Add 3 and end around carry to the result . If carry=0, the
result is negative. Subtract 3, i.e, and take the 1°s complement of the result.

Ex: Perform9-4
1100 9 in xs-3
+1000 Complement of 4 n Xs-3

1) 0100 There isa carry
+0011 Add 0011(3)

0111
1 End around carry

1000 5inxs-3

The minuend and the 1°s complement of the subtrahend in xs-3 are added in the upper 4-
bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum bits

of the upper adder in the lower adder and the sum bits of the lower adder are complemented to
get the result. If the carry-out from the upper adder is a 1, then 3=0011 is added to the sum bits
of the lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat in digital
machines because a binary adder can add only two binary numbers at a time.
In a binary multiplier, instead of adding all the partial products at the end, they are added two at
a time and their sum accumulated in a register (the accumulator register). In addition, when the
multiplier bit is a 0,0s are not written down and added because it does not affect the final result.
Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this process is
Multiplicand 1110
Multiplier 1001
1110 The LSB of the multiplier is a 1; write down the
multiplicand; shift the multiplicand one position to the left
(11100)
1110 The second multiplier bit is a 0; write down the previous
result 1110; shift the multiplicand to the left again (1110
00)

+1110000 The fourth multiplier bit is a 1 write down the new
multiplicand add it to the first partial product to obtain the
final product.
1111110
This multiplication process can be performed by the serial multiplier circuit , which
multiplies two 4-bit numbers to produce an 8-bit product. The circuit consists of following
elements
X register: A 4-bit shift register that stores the multiplier --- it will shift right on the falling edge
of the clock. Note that Os are shifted in from the left.
B register: An 8-bit register that stores the multiplicand; it will shift left on the falling edge of
the clock. Note that Os are shifted in from the right.
A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.
Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder outputs S7
through So are connected to the D inputs of the accumulator so that the sum can be transferred to
the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the multiplication of 1110
by 1001. The complete process requires 4 clock cycles.
1 Before the first clock pulse: Prior to the occurrence of the first clock pulse, the register A is
loaded with 00000000, the register B with the multiplicand 00001110, and the register X with
the multiplier 1001. Assume that each of these registers is loaded using its asynchronous
inputs(i.e., PRESET and CLEAR). The output of the adder will be the sum of A and B,i.e.,
00001110.
2 First Clock pulse:Since the LSB of the multiplier (Xo) is a 1, the first clock pulse gets
through the AND gate and its positive going transition transfers the sum outputs into the
accumulator. The subsequent negative going transition causes the X and B registers to shift right
and left, respectively. This produces a new sum of A and B.
3 Second Clock Pulse: The second bit of the original multiplier is now in Xo . Since this bit is a
0, the second clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are
not transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a new
sum is produced.
4 Third Clock Pulse:The third bit of the original multiplier is now in Xo;since this bit is a 0, the
third clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not
transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a hew
sum is produced.
5 Fourth Clock Pulse: The last bit of the original multiplier is now in Xo, and since it is a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of
information results in the use of different codes by different digital systems. It is sometimes
necessary to use the output of one system as the input to another. A conversion circuit must be
inserted between the two systems if each uses different codes for the same information. Thus a

code converter is a logic circuit whose inputs are bit patterns representing numbers (or
character) in one cod and whose outputs are the corresponding representation in a different
code. Code converters are usually multiple output circuits.

To convert from binary code A to binary code B, the input lines must supply the bit

combination of elements as specified by code A and the output lines must generate the
corresponding bit combination of code B. A combinational circuit performs this transformation
by means of logic gates.
For example, a binary —to-gray code converter has four binary input lines Bs, B3 B2,B1 and four
gray code output lines G4 G3G2,G1. When the input is 0010, for instance, the output should be
0011 and so forth. To design a code converter, we use a code table treating it as a truth table to
express each output as a Boolean algebraic function of all the inputs.

In this example, of binary —to-gray code conversion, we can treat the binary to the
gray code table as four truth tables to derive expressions for Gs, G3, G2, and G1. Each of these
four expressions would, in general, contain all the four input variables B4, B3,B;,and Bl
Thus,this code converter is actually equivalent to four logic circuits, one for each of the truth
tables.

The logic expression derived for the code converter can be simplified using the usual
techniques, including _don‘t cares® if present. Even if the input is an unweighted code, the same
cell numbering method which we used earlier can be used, but the cell numbers --must
correspond to the input combinations as if they were an 8-4-2-1 weighted code. s
Design of a 4-bit binary to gray code converter:

G,=Zm(8,9,10,11,12,13,14,15) G,=B,

G,=Xm4,5,6,7,8,9,10,11) G,=B.B,+B,B,=B,®B,
G,=Im(2,3,4,5.10,11,12,13) G,=B;B,+B,B,=B, ®B,
G,=XIm(1,2,5,6,9, 10,13, 14) G,=B,B, +B,B, =B, ®B,

4-bit binary 4-bit Gray
By, B Gy G,

F
o
[
£

»

et~ 1= = =R =N =N =N =]
= L= L= k= Rl = L= L = X =]
== s W = B o N e TR o Y]
—_ D D DD D e D D =D
et = L= R =N =N = = = N =]
== e = = = =]
D0 = - 20000 —- -0
L= P = =T A = I T T Y]

(a) Conversion table {c} Logic diagram
4-bit binary-to-Gray code converter

|

iy

0 EE]

]
G, = B, & B, N G, - B, @ B,
Koamap for G (b) K- F-map tor Gy

“-bit binarny-to-Gray code convearter.

Design of a 4-bit gray to Binary code converter:

=EZ m{l2, 13, 15, 14, 10, 11 mi8,. 9, 10, 11, 12, 13, 14,
=Zm{ 6, 7.5 4, 10, 11,9, 5.6, 7,.8,9, 10, 11)
E (3, 2, 5.4, 15, 14,9, L<b. 15D
EZol,. 2, 7,4, 13, 14, 11, L. 13, 1<)

e |
4Ga+ Gagsf G, @G,
14G1G; + GGG, + G,G,G, + G,G,G,
=G G, DG)+ GG, DG,)=G, 989G, &G,=B, DG,
G,G;G.G, + G,G,G,G, + G,G,G.G, + G,G,G.G, + G,G,G.G,

+ G,G,G,G, + G,G,G.G,+ G,G,G.G,

=G,G,(G,®G,) +G,G,(G,®G,) + G,G4(G, ®G,) +G,G,(G, ®G,)

=G,®G,®G,®G,

4-bit Gray
Ga

I

“<2-0000===-0000(0|E

eSS 00000000 p
naoﬂ-d-l-l-l-l-loooﬂ

00=4=240000=4==00(f
O==00==00==00==0|0
R I-I-I-1-I-T- 11
~g-0=0-0=0-0-0-0|0

{a) Conversion table
G2G,y
00

{c) Logic diagram
GG,

GG, 113 102

-
o _.-gg_..ag....gg....ponmg

o1 11
1 3]
o0 oo

5 T Ed [}
o1 o1 1]

13 15 4
11 1 1 11

] EE]
10 1 1 10

B, =G,
K-map for By

11
1

B, =G, ® G, @ G; B,=G,8G,2G,9G,
K-map for B, () K-maps K-map for B,

4-bit Gray-to-binary code conwverter.

Design of a 4-bit BCD to XS-3 code converter:

My=Em{S5 6, 7.8, 9)+d{10, 11, 12, 13,

Ma=Em(1, 2, 3,4, 3)+d(10, 11, 12, 13,

MKy =Zm(D. 3, 4. 7. 8) +d10. 11, 12, 13,

MHy=EXm(0 2, 4.6, 8) +d(10,. 17, 12. 13,

The minimal expressions are

X, =8B,+ BB, + B,8,

Xy = By, + B8, + B8,

>, =8B,8B, + BB,

®, = B,

{a) Conversion table {b) Minimal expressions
4-bit BOD-1o-X5-3 code convernear

F

<<s0p000000|P
~sa-sp0000(X

O0==u==0000

og==p0==00|P
~g-pg=0-=0~0(0
~000g====0lX
o==po==00=%
040-=0=0=0=|X

B,B, 8.8,

B,8;\ %0 B,B\ 20
[]
0o 00

M o1

11 11

X, =B,+ B8, + B8, K‘SEBSEQEI“‘EQBI“‘E:‘BQ
K-map for X, K-map for X,

B‘B:'Bzaq 11 10

3 F
0o

m

1"

x

X, =B,B, + BB, X, =B,
K-map for X, (© K- K-map for X,

4-bit BCD-to-XS-3 code converter,

Design of a BCD to gray code converter:

o

00=-400==00 F§
(]
@

4444440000 ,?a
g

Y- T-T-1-1-1-1-1-1}
co=---0000|P 3

+=00000000|0
oooo==-a00|f g

A0 == ==0 9

{a) BCD-to-Gray code conversion table (b} Logic diagram
BCD-to-Gray code converter.

>
s ————so
-
!]
G, -85, « B.e, -8, o s, G =B,8, « B, . B, -8, ® 8,
Komaps for a BOCD-to-Gray code converter.

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code
Input:

b

4444444400000000(3(7

D000-au=a4440000 m&)
<

:
QONODEUNSD %

3

[i

e
=0

o
]

0
un)@ﬁ 0

o
b

0<4<400-24004<00=<0(0)

D0Q4444444400000

00=4-440000-44400|0)

-
0

= BS + BD + aAacD
() K-rmap (S} MAND logic
Truth table, K-map arnd logic diagram for the SOP circuit.

E

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211 BCD code

:

Toin
1
1

—l

Do~ s0N=0
w0000 }E
.....-gn_n_;ggg-u
~=0a0=0=00 0§
~“ 0000 -===0|0Q0
O=0=0=20=0=|=

forun = AD + AC + CD
(a) Truth table {b) K-map {c) Logic diagram
Truth table, K-map and logic diagram for the SOP circuit.

Design of a Combinational circuit to produce the 2°s complement of a 4-bit binary number:

nput Output

- === O0000000 | P
praraeray I-I- - 1 -E--1-1N] =
Y - - gy e, R)
- e e - Y - R - - - = |
(== e et~ =L =R =T =l |
O= S 00= - 00=—=00==0|
PR = = = T = T = I = T B T e o

ODO00000Sdddda s M

{a) Conversion table
Conversion table and K-maps for the circuit

S S Y [N N
[I iy B B

4
{a) Sevaen-saegmeant display
oD
AB
-
Oy Fo
D

Ed

o

5,

K]

ICIII

tw =B + CO + CD e
(o) K-map {c) Logic diagram

Comparators:

EQUALITY = (A, @ B,)(A, O B,)(A, © B,)(A, © B,

A ————— L

1-bit .E
comparator -
B—— G

Block diagram of a 1-bit comparator.

1. Magnitude Comparator:

The logic for a 1-bit magnitude comparator: Let the 1-bit numbers be A=A, ,and B=B,,
IfA;=1and B,=0, then A > B.
Therefore,
A>B:G=AB,
IfA,=0and B,=1, then A <B.
Therefore,
A<B:L=ASB,
If A, and B, coincide, i.e. A ;=B =0orif A,=B,= 1, then A =B.
Therefore,
A=B:E=A,0B,

j%a=s:e;
)

{a) Truth table {b) Logic diagram
1-bit comparator.

1- bit Magnitude Comparator:
The logic for a 2-bit magnitude comparator: Let the two 2-bit numbersbe A=A A and B=B, B,

1.Ifﬁ,=landB|=ﬂ.menﬁ:=-Bur

2.1If A, and B, coincide and Aﬂé | and B; =0, then A > B. So the logic expression for A > B is
A>B:G=AB, +(A 0B)AB,

I.IfA,=0and B, =1,thenA <Bor

2.1f A, and B, coincide and A;=0 and B =1, then A< B. 5o the expression for A <B is

A<B:L=AB +(A OB)AB,

IfA, and B, coincide and if A and B, coincide then A = B. So the expression for A = B is
A=B:E=(A OB)A,0B)

Logic diagram of a 2-bit magnitude comparator.

4-Bit Magnitude Comparator:

The logic for a 4-bit magnitude comparator: Let the two 4-bit numbers be A = A ;A A A, and
B =B,B,B B,.

1.IfA;=1and B, =0, then A > B. Or

2. If A, and B, coincide, and if A, = 1 and B, =0, then A > B. Or

3. If A, and B, coincide, and if A, and B, coincide. and if A, =1 and B; =0, then A > B. Or

4, If AJ and BJ coincide, and if A, and B, coincide, and if A, and B, coincide, and if A, =1
and B, =0, then A > B.
From these statemenis, we see that the logic expression for A > B can be written as
(A >B)=A,B,; + (A; © BA,B, + (A, © B,)(A, ©@ B,)A B,
+ (A, ©B)(A, @ B,)A, ©@B)A B,

Similarly, the logic expression for A < B can be written as
A<B= 5333 +(A, 0 Esjﬁzﬂ1 +(A; 0B)(A, 0 BI)EIB1
+(A;©B,)(A, 0 B))(A, ©B))AB,
If A, and B, coincide and if A, and B, coincide and if A, and B, coincide and if A, and B
coincide, then A = B.
So the expression for A = B can be written as

(A=B)=(A, 0 B,)(A, OB,)(A, OB,)(A, OB

IC Comparator:

B, —
h: —)

(A = BYaur —
(A > By, —
(A < B)yy —
(A = B)y, —

Ay

GND —

t

@ ;U s 0N =

16
15
14

12
11
10
k=]

T485

{a) Pin diagram of T485

T4

MSBs
A — (A = BIOU’I
As— (A = Blayr
Ay — (A > Bgur
[—

By,
By——
By —
B, —

7485

(b} Cascading of two 7485s
Pin diagram and cascading of 7485 4-bit comparators.

ENCODERS:

Octal to Binary Encoder:

Oxctal digits

ssasp000|p
4040=20=0|F

SaMAUN=0

{a) Truth table

Use of 7485 as a S-bit comparator.

imooozm

— Oy,
—C Oy,
—o O

—C Olpp
O Oy

Block diagram of encoder.

>~

= >~

Y

{b) Logic diagram
Octal-to-binary encoder.

Decimal to BCD Encoder:

Decimal inputs

B

OCO==~=000c|F
~—o-20=0=0=alF

WMt kBN =0
= = DO 000000

e~k w20

(a) Logic symbol {b) Truth table
Decimal inpuls

b, D, D, D, D, D, D, D, D,

(c) Logic diagram
Decimal-to-BCD encoder.

Tristate bus system:

In digital electronicsthree-state, tri-state, or 3-statelogic allows an output port to assume a high

impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the
circuit.

This allows multiple circuits to share the same output line or lines (such as a bus which cannot
listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400
and 4000 series as well as in other types, but also internally in many integrated circuits. Other
typical uses are internal and external buses in microprocessors, computer memory, and
peripherals. Many devices are controlled by an active-low input called OE (Output Enable)
which dictates whether the outputs should be held in a high-impedance state or drive their
respective loads (to either 0- or 1-level).

=]
o =] Lo
N = -
I./ = o e]
4
Atristate buffer can be thought of as a switch. If 2 is i i
on, the switch is closed. IfB is off, the switch is open._ =

o Z (high impedance)

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/4000_series
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Active-low

Truth Table

UNIT - IV

A/D and D/A Converters:

AIUYUCT=LUTUIY \/ LJ U V U

devices interface with analogue devices, and vice versa. They are important building blocks of any digital
system, including both communication and noncommunication systems, besides having other applications.
D/A converter is important not only because it is needed at the output of most digital systems, where if
converts a digital signal into an analogue voltage or current so that it can be fed to a chart recorder, fo
instance, for measurement purposes, or a servo motor in a control application; it is also important because it
forms an indispensable part of the majority of A/D converter types. An A/D converter, too, has numeroug
applications. When it comes to transmitting analogue data, it forms an essential interface with a digita
communication system where the analogue signal to be transmitted is digitized at the sending end with an A/D
converter. It is invariably used in all digital read-out test and measuring equipment. Whether it is a digita
multimeter or a digital storage oscilloscope or even a pH meter, an A/D converter is an important and essentia
component of all of them. In this chapter, we will discuss the operational fundamentals, the major performance
specifications, along with their significance, and different types and applications of digital-to-analogue and
analogue-to-digital converters, in addition to application-relevant information of some of the popular devices,
A large number of solved examples is also included to illustrate the concepts.

Digital-to-Analogue Converters
D/A converter takes digital data at its input and converts them into analogue voltage or current that is
proportional to the weighted sum of digital inputs. In the following paragraphs it is briefly explained.
how different bits in the digital input data contribute a different quantum to the overall output analogue voltage
or current, and also that the LSB has the least and the MSB the highest weight.
Simple Resistive Divider Network for D/A Conversion
Simple resistive networks can be used to convert a digital input into an equivalent analogue output. Figure 12.1
shows one such resistive network that can convert a three-bit digital input into an analogue output. This
network, however, can be extended further to enable it to perform digital-to-analogue conversion of digital data
with a larger number of bits. In the network of Fig. 12.1, if RL is much
larger than R_ it can be proved with the help of simple network theorems that the output analogue voltage is
given by

_[Vi/RI+[Va/ (R/2)]+[V5/(R/4)]
AT TR+ [1/(R/2)1+[1/(R/4)]

_ [Vi/R]+[2V,/R]+[4V3/R]

~ [1/R]+[2/R]+[4/R]

_ V12V, +4V,

=nrenten

which can be further expressed as

B Vix 2% Vo x 2V Vg 22
B 23— 1

Va

The generalized expression of Equation (12.4) can be extended further to an n-bit D/A converter to
get the following expression:

Vix2°+Vyx2!+Vy x 22+ ... +V, x 2!
A= 2n |

(12.5)

In expression (12.5),if Vi =V, =... =V, =V, then a logic *1" at the LSB position would contribute
V/(2" —1) to the analogue output, and a logic ‘1’ in the next adjacent higher bit position would

Figure 12.1 Simple resistive network for D/A conversion.

contribute 2V/(2" — 1) to the output. The contributions of successive higher bit positions in the case
of a logic "1 would be 4V/(2" — 1), 8V/(2" — 1), 16V/(2" — 1) and so on. That is, the contribution of
any given bit position owing to the presence of a logic “1" is twice the contribution of the adjacent
lower bit position and half that of the adjacent higher bit position. When all input bit positions have a
logic *1°, the analogue output is given by

B V(E{}+31+22_’_ L. +2rz—|) B

V, = v 12.6)

2n—1
In the case of all inputs being in the logic ‘0" state, V,, = 0. Therefore, the analogue output varies from
0 to V volts as the digital input varies from an all Os to an all 1s input.

[2.1.2 Binarv Ladder Network for D/A Conversion

The simple resistive divider network of Fig. 12.1 has two serious drawbacks. One, each resistor in
the network is of a different value. Since these networks use precision resistors, the added expense
becomes unattractive. Two, the resistor used for the most significant bit (MSB) is required to handle
a much larger current than the LSB resistor. For example, in a 10-bit network, the current through the
MSB resistor will be about 500 times the current through the LSB resistor.

To overcome these drawbacks, a second type of resistive network called the binary ladder (or R/2R
ladder) is used in practice. The binary ladder, too, is a resistive network that produces an analogue
output equal to the weighted sum of digital inputs. Figure 12.2 shows the binary ladder network for a
four-bit D/A converter. As is clear from the figure, the ladder is made up of only two different values
of resistor. This overcomes one of the drawbacks of the resistive divider network. It can be proved
with the help of simple mathematics that the analogue output voltage V in the case of binary ladder
network of Fig. 12.2 is given by

Vi xZU—I—Vng'—i—V;xE:—i—V_‘xZR
V{'\: 2_1

In general, for an n-bit D/A converter using a binary ladder network

Vix 204+ vy x 2!+ vy 22 - v, x 27!

I

For V| :Vg :V}: V. V‘,\l: I(j"—]}.-'{:',”IV For V| :Vl}:v_;: e =V

n

Figure 12.2 Binary ladder network for D/A conversion.

n-bit
Digital Input

Gates

n-Lines

Register

n-Lines

Amplifiers

Ladder

Figure 12.3 Block schematic representation of a D/A converter.

The analogue output voltage in this case varies from O (for an all Os input) to [(2" — 1)/2"]V (for an
all 1s input).

The analogue output voltage in this case varies from O (for an all Os input) to [(2" —1)/2"]V (for an
all 1s input).

Also, in the case of a resistive divider network, the LSB contribution to the analogue output is
[1/(2" —1)]V. This is also the minimum possible incremental change in the analogue output voltage.
The same in the case of a binary ladder network would be (1/2")V.

A binary ladder network is the most widely used network for digital-to-analogue conversion. for
obvious reasons. Although actual D/A conversion takes place in this network. a practical D/A converter
device has additional circuitry such as a register for temporary storage of input digital data and level
amplifiers to ensure that the digital signals presented to the resistive network are all of the same level.
Figure 12.3 shows a block schematic representation of a complete n-bit D/A converter. D/A converters
of different sizes (eight-bit, 12-bit, 16-bit, etc.) are available in the form of integrated circuits.

12.2 D/A Converter Specifications

The major performance specifications of a D/A converter include resolution. accuracy, conversion
speed, dynamic range, nonlinearity (NL) and differential nonlinearity (DNL) and monotonocity.

[12.2.1 Resolution

The resolution of a D/A converter is the number of states (2") into which the full-scale range is
divided or resolved. Here, n is the number of bits in the input digital word. The higher the number
of bits, the better is the resolution. An eight-bit D/A converter has 255 resolvable levels. It is said to

have a percentage resolution of (1/255) x 100 =0.39 % or simply an eight-bit resolution. A 12-bit D/A
converter would have a percentage resolution of (1/4095) x 100=0.0244 %. In general, for an n-bit
D/A converter, the percentage resolution is given by (1/2" — 1) x 100. The resolution in millivolts for
the two cases for a full-scale output of 5 V is approximately 20 mV (for an eight-bit converter) and
1.2 mV (for a 12-bit converter).

[12.2.2 Accuracy

The accuracy of a D/A converter is the difference between the actual analogue output and the ideal
expected output when a given digital input is applied. Sources of error include the gain error (or
full-scale error), the offset error (or zero-scale error), nonlinearity errors and a drift of all these factors.
The gain error [Fig. 12.4(a)] is the difference between the actual and ideal output voltage, expressed
as a percentage of full-scale output. It is also expressed in terms of LSB. As an example, an accuracy
of £0.1 % implies that the analogue output voltage may be off by as much as =5 mV for a full-scale
output of 5 V throughout the analogue output voltage range. The offset error is the error at analogue
zero [Fig. 12.4(b)].

12.2.3 Conversion Speed or Settling Time

The conversion speed of a D/A converter is expressed in terms of its settling time. The sertling time
is the time period that has elapsed for the analogue output to reach its final value within a specified
error band after a digital input code change has been effected. General-purpose D/A converters have
a settling time of several microseconds, while some of the high-speed D/A converters have a settling

Ideal

/// Actual

/

GaTin /
Error /

Analog output

/ S
'/
/ |

EE——
Digital Input
(a)

Figure 12.4 (a) Gain error and (b) offset error.

Actual

ldeal

Analog output

Error

Digital Input

(b)

Figure 12.4 (continued).

time of a few nanoseconds. The settling time specification for D/A converter type number AD 9768
from Analog Devices USA, for instance, is 3ns.

time of a few nanoseconds. The settling time specification for D/A converter type number AD 9768
from Analog Devices USA, for instance, is 5ns.

12.2.4 Dynamic Range

This is the ratio of the largest output to the smallest output, excluding zero, expressed in dB. For
linear D/A converters it is 20 x log2”, which is approximately equal to 6n. For companding-type D/A

o]

converters, discussed in Section 12.3, it is typically 66 or 72 dB.

12.2.5 Nonlinearity and Differential Nonlinearity

Nonlinearity (NL) is the maximum deviation of analogue output voltage from a straight line drawn
between the end points, expressed as a percentage of the full-scale range or in terms of LSBs.
Differential nonlinearity (DNL) is the worst-case deviation of any adjacent analogue outputs from the
ideal one-LSB step size.

12.2.6 Monotonocity

In an ideal D/A converter, the analogue output should increase by an identical step size for every
one-LSB increment in the digital input word. When the input of such a converter is fed from the output
of a counter, the converter output will be a perfect staircase waveform, as shown in Fig. 12.5. In such
cases, the converter is said to be exhibiting perfect monotonocity. A D/A converter is considered as
monotonic if its analogue output either increases or remains the same but does not decrease as the
digital input code advances in one-LSB steps. If the DNL error of the converter is less than or equal
to twice its worst-case nonlinearity error, it guarantees monotonocity.

D/A
Converter

Digital I'P

3 3

Figure 12,5 Monotonocity in a D/A converter.

12.3 Types of D/A Converter

The D/A converters discussed in this section include the following:

. Multiplying-type D/A converters.

1
2. Bipolar-output D/A converters.
3. Companding D/A converters.

12.3.1 Multiplying D/A Converters

In a multiplying-type D/A converter, the converter multiplies an analogue reference by the digital
input. Figure 12.6 shows the circuit representation. Some D/A converters can multiply only positive
digital words by a positive reference. This is known as single quadrant (QUAD-I) operation. Two-
quadrant operation (QUAD-I and QUAD-III) can be achieved in a D/A converter by configuring
the output for bipolar operation. This is accomplished by offsetting the output by a negative MSB
(equal to the analogue output of 1/2 of the full-scale range) so that the MSB becomes the sign bit.

Digital Input

Converter Analog
Output

Figure 12.6 Multiplying-type D/A converter.

Some DfA converters even provide four-quadrant operation by allowing the use of both positive and
negative reference. Multiplying D/A converters are particularly useful when we are looking for digitally
programmable attenuation of an analogue input signal.

[2.3.2 Bipolar-Output D/A Converters

In bipolar-output D/A converters the analogue output signal range includes both positive and negative
values. The transfer characteristics of an ideal two-quadrant bipolar-output D/A converter are shown
in Fig. 12.7.

12.3.3 Companding D/A Converters

Companding-type D/A converters are so constructed that the more significant bits of the digital input
have a larger than binary relationship to the less significant bits. This decreases the resolution of
the more significant bits, which in turn increases the analogue signal range. The effect of this is to
compress more data into more significant bits.

12.4 Modes of Operation

D/A converters are usually operated in either of the following two modes of operation:

I. Current steering mode.
2. Voltage switching mode.

[2.4.1 Current Steering Mode of Operation

In the current steering mode of operation of a D/A converter, the analogue output is a current equal to
the product of a reference voltage and a fractional binary value D of the input digital word. D is equal
to the sum of fractional binary values of different bits in the digital word. Also, fractional binary values
of different bits in an n-bit digital word starting from the LSB are 2°/2", 272", 222", . . ., an=lm,

Analog
O/P

+FS
Digital
IP

FS

Figure 12.7 Bipolar-output D/A converter transfer characteristics.

2R /16

V16 (Analog _C-}round)

2R

A

(Digital Ground)

MSB LSB

Figure 12.8 Current steering mode of operation of a D/A converter.

The output current is often converted into a corresponding voltage using an external opamp wired
as a current-to-voltage converter. Figure 12.8 shows the circuit arrangement. The majority of D/A
converters in IC form have an in-built opamp that can be used for current-to-voltage conversion. For
the circuit arrangement of Fig. 12.8, if the feedback resistor R, equals the ladder resistance R, the
analogue output voltage at the opamp output is —(D.V, ;).

The output current is often converted into a corresponding voltage using an external opamp wired
as a current-to-voltage converter. Figure 12.8 shows the circuit arrangement. The majority of D/A
converters in IC form have an in-built opamp that can be used for current-to-voltage conversion. For
the circuit arrangement of Fig. 12.8, if the feedback resistor R, equals the ladder resistance R, the
analogue output voltage at the opamp output is -(D.V ;).

The arrangement of the four-bit D/A converter of Fig. 12.8 can be conveniently used to explain the
operation of a D/A converter in the current steering mode. The R/2R ladder network divides the input
current / due to a reference voltage V. applied at the reference voltage input of the D/A converter
into binary weighted currents, as shown. These currents are then steered to either the output designated
Out-1 or Out-2 by the current steering switches. The positions of these current steering switches are
controlled by the digital input word. A logic °1" steers the corresponding current to Out-1, whereas a
logic 0" steers it to Out-2. For instance, a logic *1" in the MSB position will steer the current [/2 to
Out-1. A logic "0 steers it to Out-2, which is the ground terminal. In the four-bit converter of Fig. 12.8,
the analogue output current (or voltage) will be maximum for a digital input of 1111. The analogue
output current in this case will be 1/2 4174 +1/8 4+ 1/16 = (15/16)1. The analogue output voltage will
be (—15/10)IR. = (—15/16)IR. Also, [= V;/R as the equivalent resistance of the ladder network
across Vg is also R. The analogue output voltage is then [(—15/160)(Vep)/R] xR = (—15/16) Vs .
Here, 15/16 is nothing but the fractional binary value of digital input 1111. In general, the maximum
analogue output voltage is given by —(1—27") x V., where n is the number of bits in the input digital
word.

12.4.2 Voltage Switching Mode of Operation

In the voltage switching mode of operation of a R/2R ladder type D/A converter, the reference voltage
is applied to the Out-1 terminal and the output is taken from the reference voltage terminal. Out-2 is
joined to analogue ground. Figure 12.9 shows a four-bit D/A converter of the R/2R ladder type in

(Angle O/P)

o0—

——o0

J7

(Digital Ground)

I

MSB LSB

Figure 12.9 Voltage switching mode of operation of a D/A converter.

voltage switching mode of operation. The output voltage is the product of the fractional binary value
voltage switching mode of operation. The output voltage is the product of the fractional binary value of the digital input word
and the reference voltage applied at the Out-1 terminal, i.e. D_Vref _ As the positive reference voltage produces a positive
analogue output voltage, the voltage switching mode of operation is possible with a single supply. As the circuit produces
analogue output voltage, it obviates the need for an opamp and the feedback resistor. However, the reference voltage applied to
the Out-1 terminal in this case will see different input impedances for different digital inputs. For this reason, the source of the
input is buffered.

UNIT -V
Semiconductor Memories and Programmable Logic Devices:

Introduction:

A memory unit is a device to which binary information is transferred for storage and from which
information is retrieved when needed for processing. When data processing takes place,
information from memory is trans

ferred to selected registers in the processing unit.

Intermediate and final results obtained in the processing unit are transferred back to be stored in
memory. Binary information received from an input device is stored in memory, and information
transferred to an output device is taken from memory. A memory unit is a collection of cells
capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random access memory (RAM)
and read only memory (ROM). RAM stores new information for later use. The process of storing
new information into memory is referred to as a memory write operation. The process of

transferring the stored information out of memory is referred to as a memory read operation.
RAM can perform both write and read operations.

ROM can perform only the read operation. This means that suitable binary information is already
stored inside memory and can be retrieved or read at any time. However, that information cannot
be altered by writing.

ROM is a programmable logic device (PLD). The binary information that is stored within such a
device is specified in some fashion and then embedded within the hardware in a process is
referred to as programming the device. The word “programming” here refers to a hardware
procedure which specifies the bits that are inserted into the hardware configuration of the device.
ROM is one example of a PLD. Other such units are the programmable logic array (PLA),
programmable array logic (PAL), and the field-programmable gate array (FPGA).

A PLD is an integrated circuit with internal logic gates connected through electronic intact.
Programming the device involves blowing those fuses along the paths that must be removed in
order to obtain the particular configuration of the desired logic function.

We introduce the configuration of PLDs and indicate procedures for their use in the design of
digital systems. We also present CMOS FPGAs, which are configured by downloading a stream
of bits into the device to configure transmission gates to establish the internal connectivity
required by a specified logic function (combinational or sequential).

A typical PLD may have hundreds to millions of gates interconnected through hundreds to
thousands of internal paths. In order to show the internal logic diagram of such a device in a
concise form, it is necessary to employ a special gate symbology applicable to array logic. Figure
shows the conventional and array logic symbols for a multiple input OR gate. Instead of having
multiple input lines into the gate, we draw a single line entering the gate. The input lines are
drawn perpendicular to this single line and are connected to the gate through internal fuses. In a
similar fashion, we can draw the array logic for an AND gate. This type of graphical
representation for the inputs of gates will be used throughout the chapter in array logic diagrams.

= e

(a) Conventional symbol (b) Array logic symbol

Conventional and array logic diagrams for OR gate

RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells, together with associated circuits needed to transfer
information into and out of a device. The architecture of memory is such that information can be
selectively retrieved from any of its internal locations. The time it takes to transfer information to
or from any desired random location is always the same—hence the name random access
memory, abbreviated RAM. In contrast, the time required to retrieve information that is stored on
magnetic tape depends on the location of the data.

A memory unit stores binary information in groups of bits called words. A word in memory is an
entity of bits that move in and out of storage as a unit. A memory word is a group of 1’s and 0’s
and may represent a number, an instruction, one or more alphanumeric characters, or any other
binary-coded information. A group of 8 bits is called a byte. Most computer memories use words

made up of four bytes. The capacity of a memory unit is usually stated as the total number of
bytes that the unit can store.

Communication between memory and its environment is achieved through data input and output
lines, address selection lines, and control lines that specify the direction of transfer. A block
diagram of a memory unit is shown in Fig. below. The n data input lines provide the information
to be stored in memory, and the n data output lines supply the information coming out of
memory. The k address lines specify the particular word chosen among the many available. The
two control inputs specify the direction of transfer desired: The Write input causes binary data
toe transferred into the memory, and the Read input causes binary data to be transferred out of
memory.

ln data input lines

k address lines —)
Memory unit
Read —» 2* words

n bit per word

Write ——»

lndula output lines

Block Diagram of a memory unit

The memory unit is specified by the number of words it contains and the number of bits in each
word. The address lines select one particular word. Each word in memory is assigned an
identification number, called an address, starting from 0 up to 2k - 1, where k is the number of
address lines. The selection of a specific word inside memory is done by applying the k -bit
address to the address lines. An internal decoder accepts this address and opens the paths needed
to select the word specified. Memories vary greatly in size and may range from 1,024 words,
requiring an address of 10 bits, to 232 words, requiring 32 address bits. It is customary to refer to
the number of words (or bytes) in memory with one of the letters K (kilo), M (mega), and G
(giga). K is equal to 210, M is equal to 220, and G is equal to 230. Thus, 64K = 216, 2M = 221,
and 4G = 232.

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each. Since 1K =
1,024 = 210 and 16 bits constitute two bytes, we can say that the memory can accommodate
2,048 = 2K hytes. Below figure shows possible contents of the first three and the last three
words of this memory. Each word contains 16 bits that can be divided into two bytes. The words
are recognized by their decimal address from 0 to 1,023. The equivalent binary address consists
of 10 bits. The first address is specified with ten 0’s; the last address is specified with ten 1°’s,
because 1,023 in binary is equal to 1111111111. A word in memory is selected by its binary
address. When a word is read or written, the memory operates on all 16 bits as a single unit.

Memory address

Binary Decimal Memory content

0000000000 0 [1011010101011101 |

0000000001 ! [1010101110001001 |

0000000010 2 [0000110101000110 |

1111111101 1021 [1001110100010100 |

111111110 1022 [0000110100011110|

(SRS ERRE R 1023 [1101111000100101 |

Contents of a 1024 * 16 memory
Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded to
earlier, the write signal specifies a transfer-in operation and the read signal specifies a
transfer-out operation. On accepting one of these control signals, the internal circuits inside the
memory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into memory
are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memory to the data input lines.

3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of memory are as
follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input

The memory unit will then take the bits from the word that has been selected by the address and
apply them to the output data lines. The contents of the selected word do not change after the
read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide the
two control inputs for reading and writing in a somewhat different configuration. Instead of
having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: One input selects the unit and the other determines the
operation. The memory operations that result from these control inputs are specified in Table
below.

Control Inputs to Memory Chip
Memory Enable Read/Write Memory Operation

0 X None
| 0 Write to selected word

| | Read from selected word

The memory enable (sometimes called the chip select) is used to enable the particular memory
chip in a multichip implementation of a large memory. When the memory enable is inactive, the
memory chip is not selected and no operation is performed. When the memory enable input is
active, the read/write input determines the operation to be performed.

Memory Decoding

In addition to requiring storage components in a memory unit, there is a need for decoding
circuits to select the memory word specified by the input address. In this section, we present the
internal construction of a RAM and demonstrate the operation of the decoder. To be able to
include the entire memory in one diagram, the memory unit presented here has a small capacity
of 16 bits, arranged in four words of 4 bits each. An example of a two-dimensional coincident
decoding arrangement is presented to show a more efficient decoding scheme that is used in
large memories. We then give an example of address multiplexing commonly used in DRAM
integrated circuits.

Internal Construction

The internal construction of a RAM of m words and n bits per word consists of m * n binary
storage cells and associated decoding circuits for selecting individual words. The binary storage
cell is the basic building block of a memory unit. The equivalent logic of a binary cell that stores
one bit of information is shown in Fig. below. The storage part of the cell is modeled by an SR
latch with associated gates to form a D latch. Actually, the convenient to model it in terms of
logic symbols. A binary storage cell must be very small in order to be able to pack as many cells
as possible in the small area available in the integrated circuit chip. The binary cell stores one bit
in its internal latch. The select input enables the cell for reading or writing, and the read/write
input determines the operation of the cell when it is selected. A 1 in the read/write input provides
the read operation by forming a path from the latch to the output terminal. A 0 in the read/write
input provides the write operation by forming a path from the input terminal to the latch.

} Output Input —| BC —> Output

Inpur —y ;
[: Read'Write

ReadWnite

(a) Logic diagram (b) Block diagram

Memory cell

The logical construction of a small RAM is shown in Fig. below. This RAM consists of four
words of four bits each and has a total of 16 binary cells. The small blocks labeled BC represent
the binary cell with its three inputs and one output, as specified in Fig. above. A memory with
four words needs two address lines. The two address inputs go through a 2 * 4 decoder to select
one of the four words. The decoder is enabled with the memory-enable input. When the memory
enable is 0, all outputs of the decoder are 0 and none of the memory words are selected. With the
memory select at 1, one of the four words is selected, dictated by the value in the two address
lines. Once a word has been selected, the read/write input determines the operation. During the
read operation, the four bits of the selected word go through OR gates to the output terminals.
During the write operation, the data available in the input lines are transferred into the four
binary cells of the selected word. The binary cells that are not selected are disabled, and their
previous binary values remain unchanged. When the memory select input that goes into the
decoder is equal to 0, none of the words are selected and the contents of all cells remain
unchanged regardless of the value of the read/write input.

Commercial RAMs may have a capacity of thousands of words, and each word may range from
1 to 64 bits. The logical construction of a large-capacity memory would be a direct extension of
the configuration shown here. A memory with 2k words of n bits per word requires k address
lines that go into a k * 2k decoder. Each one of the decoder outputs selects one word of n bits for
reading or writing.

Input data

¥

BC

3 {

Address g
inputs Word T f

2x4
decoder

Word

:
'

BC >

Memory
enable

'

BC - L == — - R o

J U U U

Read/Write

Output data

Diagramofa 4 * 4 RAM
READ ONLY MEMORY:

A read-only memory (ROM) is essentially a memory device in which permanent binary
information is stored. The binary information must be specified by the designer and is then
embedded in the unit to form the required interconnection pattern. Once the pattern is
established, it stays within the unit even when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig. below. The
inputs provide the address for memory, and the outputs give the data bits of the stored word that
is selected by the address. The number of words in a ROM is determined from the fact that k
address input lines are needed to specify 2k words. Note that ROM does not have data inputs,
because it does not have a write operation. Integrated circuit ROM chips have one or more
enable inputs and sometimes come with three-state outputs to facilitate the construction of large
arrays of ROM.

k inputs (address) — - X —— n outputs (data)

ROM block diagram

Consider, for example, a 32 * 8 ROM. The unit consists of 32 words of 8 bits each. There are
five input lines that form the binary numbers from 0 through 31 for the address. Below figure
shows the internal logic construction of this ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 * 32 decoder. Each output of the decoder represents a memory address.
The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. Each OR gate must be considered as having
32 inputs. Each output of the decoder is connected to one of the inputs of each OR gate. Since
each OR gate has 32 input connections and there are 8 OR gates, the ROM contains 32 * 8 = 256
internal connections. In general, a 2k * n ROM will have an internal k * 2k decoder and n OR
gates. Each OR gate has 2k inputs, which are connected to each of the outputs

of the decoder.

vvvvvvvl

A;
Internal Ioglc of a 32: 8 ROM

Ay

Combinational Circuit Implementation

It was shown that a decoder generates the 2X minterms of the k input variables. By inserting OR
gates to sum the minterms of Boolean functions, we were able to generate any desired

combinational circuit. The ROM is essentially a device that includes both the decoder and the
OR gates within a single device to form a minterm generator. By choosing connections for those
minterms which are included in the function, the ROM outputs can be programmed to represent
the Boolean functions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that of
a memory unit that contains a fixed pattern of stored words. The second interpretation is that of a
unit which implements a combinational circuit. From this point of view, each output terminal is
considered separately as the output of a Boolean function expressed as a sum of minterms. For
example, the ROM may be considered to be a combinational circuit with eight outputs, each a
function of the five input variables. Output A7 can be expressed in sum of minterms as

Az(la, 13, 12, 11, lo) = ¥m(0, 2, 3, ..., 29)

(The three dots represent minterms 4 through 27, which are not specified in the figure.) A
connection marked with * in the figure produces a minterm for the sum. All other crosspoints are
not connected and are not included in the sum. In practice, when a combinational circuit is
designed by means of a ROM, it is not necessary to design the logic or to show the internal gate
connections inside the unit. All that the designer has to do is specify the particular ROM by its
IC number and provide the applicable truth table. The truth table gives all the information for
programming the ROM. No internal logic diagram is needed to accompany the truth table.

Inputs Outputs

5 x 32
decoder

NVVIVIVV.Viy

As Ay Ay A,
Programming the ROM according to Table given above

Types of ROMs

The required paths in a ROM may be programmed in four different ways. The first is called mask
programming and is done by the semiconductor company during the last fabrication process of
the unit. The procedure for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. The truth table may be submitted in a special form provided
by the manufacturer or in a specified format on a computer output medium. The manufacturer
makes the corresponding mask for the paths to produce the 1’s and 0’s according to the
customer’s truth table. This procedure is costly because the vendor charges the customer a
special fee for custom masking the particular ROM. For this reason, mask programming is
economical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called programmable
read only memory, or PROM. When ordered, PROM units contain all the fuses intact, giving all
1’s in the bits of the stored words. The fuses in the PROM are blown by the application of a
high-voltage pulse to the device through a special pin. A blown fuse defines a binary 0 state and
an intact fuse gives a binary 1 state. This procedure allows the user to program the PROM in the
laboratory to achieve the desired relationship between input addresses and stored words. Special
instruments called PROM programmers are available commercially to facilitate the procedure. In
any case, all procedures for programming ROMs are hardware procedures, even though the word
programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible, and once
programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been
established, the unit must be discarded if the bit pattern is to be changed. A third type of ROM is

the erasable PROM, or EPROM, which can be restructured to the initial state even though it has
been programmed previously. When the EPROM is placed under a special ultraviolet light for a
given length of time, the shortwave radiation discharges the internal floating gates that serve as
the programmed connections. After erasure, the EPROM returns to its initial state and can be
reprogrammed to a new set of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E2PROM). This device
is like the EPROM, except that the previously programmed connections can be erased with an
electrical signal instead of ultraviolet light. The advantage is that the device can be erased
without removing it from its socket.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)—an integrated circuit with
programmable gates divided into an AND array and an OR array to provide an AND-OR
sum-of-product implementation. There are three major types of combinational PLDs, differing in
the placement of the programmable connections in the AND— OR array. Below figure shows the
configuration of the three PLDs. The PROM has a fixed AND array constructed as a decoder and
a programmable OR array. The programmable OR gates implement the Boolean functions in
sum-of-minterms form. The PAL has a programmable AND array and a fixed OR array. The
AND gates are programmed to provide the product terms for the Boolean functions, which are
logically summed in each OR gate. The most flexible PLD is the PLA, in which both the AND
and OR arrays can be programmed. The product terms in the AND array may be shared by any
OR gate to provide the required sum-of-products implementation. The names PAL and PLA

emerged from different vendors during the development of PLDs. The implementation of
combinational circuits with PROM was demonstrated in this section. The design of
combinational circuits with PLA and PAL is presented in the next two sections.

Fixed
inputs —————» AND array
{decoder)

programmable
OR array

s Outpuis

(a) Programmable read-only memory (PROM)

programmable Fixed
AND array OR array

Inputs§ —»

— Oulpuis

(b) Programmable array logic (PAL)

programmable programmable

Inputs -
nputs AND array OR array

et (QUUIPULS

(¢) Programmable logic array (PLA)

Basic configuration of three PLDs

PROGRAMMABLE LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full decoding
of the variables and does not generate all the minterms. The decoder is replaced by an array of
AND gates that can be programmed to generate any product term of the input variables. The
product terms are then connected to OR gates to provide the sum of products for the required
Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in Fig. below. Such a
circuit is too small to be useful commercially, but is presented here to demonstrate the typical
logic configuration of a PLA. The diagram uses the array logic graphic symbols for complex
circuits. Each input goes through a buffer—inverter combination, shown in the diagram with a
composite graphic symbol, that has both the true and complement outputs. Each input and its
complement is connected to the inputs of each AND gate, as indicated by the intersections
between the vertical and horizontal lines. The outputs of the AND gates are connected to the
inputs of each OR gate. The output of the OR gate goes to an XOR gate, where the other input
can be programmed to receive a signal equal to either logic 1 or logic 0. The output is inverted
when the XOR input is connected to 1 (since x XOR 1 = x’). The output does not change when
the XOR input is connected to 0 (since x XOR 0 =x).

The particular Boolean functions implemented in the PLA of below Fig. are

F1=AB’+AC + A’BC’
F2 = (AC + BCY’

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoints are connected and
marked with a *. The output of an OR gate gives the logical sum of the selected product terms.
The output may be complemented or left in its true form, depending on the logic being realized.

GRS

QN8 BiA A

YV,

PLA with three inputs, four product terms, and two outputs

The fuse map of a PLA can be specified in a tabular form. For example, the programming table
that specifies the PLA of above Fig. is listed in above Table. The PLA programming table
consists of three sections. The first section lists the product terms numerically. The second
section specifies the required paths between inputs and AND gates. The third section specifies
the paths between the AND and OR gates. For each output variable, we may have a T (for true)
or C (for complement) for programming the XOR gate. The product terms listed on the left are
not part of the table; they are included for reference only. For each product term, the inputs are
marked with 1, 0, or — (dash). If a variable in the product term appears in the form in which it is
true, the corresponding input variable is marked with a 1. If it appears complemented, the
corresponding input variable is marked with a 0. If the variable is absent from the product term,
it is marked with a dash.

The paths between the inputs and the AND gates are specified under the column head “Inputs” in
the programming table. A 1 in the input column specifies a connection from the input variable to
the AND gate. A 0 in the input column specifies a connection from the complement of the
variable to the input of the AND gate. A dash specifies a blown fuse in both the input variable
and its complement. It is assumed that an open terminal in the input of an AND gate behaves like
al

The paths between the AND and OR gates are specified under the column head “Outputs.” The
output variables are marked with 1’s for those product terms which are included in the function.
Each product term that has a 1 in the output column requires a path from the output of the AND
gate to the input of the OR gate. Those marked with a dash specify a blown fuse. It is assumed
that an open terminal in the input of an OR gate behaves like a 0. Finally, a T (true) output
dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs, the number of product terms, and the
number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms, and
eight outputs. For n inputs, k product terms, and m outputs, the internal logic of the PLA consists
of n buffer—inverter gates, k AND gates, m OR gates, and m XOR gates. There are 2n * k
connections between the inputs and the AND array, k * m connections between the AND and OR
arrays, and m connections associated with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections of the
unit as was done in Fig. above. All that is needed is a PLA programming table from which the
PLA can be programmed to supply the required logic. As with a ROM, the PLA may be mask
programmable or field programmable. With mask programming, the customer submits a PLA
program table to the manufacturer. This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that is
available is the field programmable logic array, or FPLA, which can be programmed by the user
by means of a commercial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be undertaken in
order to reduce the number of distinct product terms, since a PLA has a finite number of AND
gates. This can be done by simplifying each Boolean function to a minimum number of terms.
The number of literals in a term is not important, since all the input variables are available
anyway. Both the true value and the complement of each function should be simplified to see
which one can be expressed with fewer product terms and which one provides product terms that
are common to other functions.

PAL

The PAL is a programmable logic device with a fixed OR array and a programmable AND array.
Because only the AND gates are programmable, the PAL is easier to program than, but is not as
flexible as, the PLA. Figure 7.16 shows the logic configuration of a typical PAL with four inputs
and four outputs. Each input has a buffer—inverter gate, and each output is generated by a fixed
OR gate. There are four sections in the unit, each composed of an AND—OR array that is three
wide, the term used to indicate that there are three programmable AND gates in each section and
one fixed OR gate. Each AND gate has 10 programmable input connections, shown in the
diagram by 10 vertical lines intersecting each horizontal line. The horizontal line symbolizes the
multiple-input configuration of the AND gate. One of the outputs is connected to a buffer—
inverter gate and then fed back into two inputs of the AND gates.

In designing with a PAL, the Boolean functions must be simplified to fit into each section.
Unlike the situation with a PLA, a product term cannot be shared among two or more OR gates.
Therefore, each function can be simplified by itself, without regard to common product terms.

The number of product terms in each section is fixed, and if the number of terms in the function
is too large, it may be necessary to use two sections to implement one Boolean function.
As an example of using a PAL in the design of a combinational circuit, consider the following
Boolean functions, given in sum-of-minterms form:

W(A, B, C, D) =g(2, 12, 13)

x(A, B, C,D)=9(7,8, 9,10, 11, 12, 13, 14, 15)

y(A,B,C,D)=9(0,2,3,4,5,6,7 8,10, 11, 15)

z2(A, B, C,D)=g(1, 2, 8, 12, 13)
Simplifying the four functions to a minimum number of terms results in the following Boolean
functions:

w=ABC’ +A’B’CD’

x=A+BCD

y=A’'B+CD +B’D’

Z=ABC'+A’B°’CD’+ AC’'D’+ A’B’C’'D

=W+ AC’'D’+ A’BC’D

Note that the function for z has four product terms. The logical sum of two of these terms is
equal to w. By using w, it is possible to reduce the number of terms for z from four to three.

PAL Programming Table
AND Inputs

Product Term B C D w Outputs

w=ABC' + A'B'CD’

1
-
-
% |

x=A+ BCD

~ W b

A'B+ CD + B'D’

z2=w+ AC'D' + A'B'C'D

AND gates inputs

Product

lerm |
1

s
y

n

JU

VAR

|
By
D=
-
By

)

\/

X

] 3 4 S U6 7 8 9 10

PAL with four inputs, four outputs, and a three-wide AND-OR structure

Unit 111
Sequential Circuits-1

Sequential circuits

Classification of sequential circuits: Sequential circuits may be classified as two types.

1. Synchronous sequential circuits
2. Asynchronous sequential circuits

Combinational logic refers to circuits whose output is strictly depended on the present value of
the inputs. As soon as inputs are changed, the information about the previous inputs is lost, that
is, combinational logics circuits have no memory. Although every digital system is likely to have
combinational circuits, most systems encountered in practice also include memory elements,
which require that the system be described in terms of sequential logic. Circuits whose output
depends not only on the present input value but also the past input value are known as sequential
logic circuits. The mathematical model of a sequential circuit is usually referred to as a
sequential machine.

P rirmaamry irousts = < Frirmamry oratiouat=
CCombinational

I . ooic C ircuit

Secornac=ry
LstEo>ust=s
NMaocrmory
EEleomoents

Comparison between combinational and sequential circuits

Combinational circuit Sequential circuit

1. In combinational circuits, the
output 1. in sequential circuits the output variables at

variables at any instant of time are any instant of time are dependent not only on
dependent only on the present input | the present input variables, but also on the
variables present state

2.memory unit is not requires in 2.memory unit is required to store the past
combinational circuit history of the input variables

3. sequential circuits are slower than
3. these circuits are faster because combinational

the delay between the i/p and o/p circuits

due to propagation delay of gates
only

4. easy to design 4. comparatively hard to design

Level mode and pulse mode asynchronous sequential circuits:

bt
Cambinational Logic 2o OLTERS

—— Memory

Internal states

Figure 1: Asynchronous Sequential Circuit

Fig shows a block diagram of an asynchronous sequential circuit. It consists of a combinational
circuit and delay elements connected to form the feedbackloops. The present state and next state
variables in asynchronous sequential circuits called secondary variables and excitation variables
respectively..

There are two types of asynchronous circuits: fundamental mode circuits and pulse mode
circuits.

Synchronous and Asynchronous Operation:

Sequential circuits are divided into two main types: synchronous and asynchronous.
Their classification depends on the timing of their signals.Synchronous sequential circuits
change their states and output values at discrete instants of time, which are specified by the rising
and falling edge of a free-running clock signal. The clock signal is generally some form of
square wave as shown in Figure below.

{..Q.{QQE.P.H.@F’.....},é

Falling edge

45 _________ , x

Clock width Rising edge

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State transitions
in synchronous sequential circuits are made to take place at times when the clock is making a
transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge). Between successive clock pulses
there is no change in the information stored in memory.

The reciprocal of the clock period is referred to as the clock frequency. The clock
width is defined as the time during which the value of the clock signal is equal to 1. The ratio of
the clock width and clock period is referred to as the duty cycle. A clock signal is said to

be active high if the state changes occur at the clock's rising edge or during the clock width.
Otherwise, the clock is said to be active low. Synchronous sequential circuits are also known
as clocked sequential circuits.

The memory elements used in synchronous sequential circuits are usually flip-flops.
These circuits are binary cells capable of storing one bit of information. A flip-flop circuit has
two outputs, one for the normal value and one for the complement value of the bit stored in it.
Binary information can enter a flip-flop in a variety of ways, a fact which give rise to the
different types of flip-flops. For information on the different types of basic flip-flop circuits and
their logical properties, see the previous tutorial on flip-flops.
In asynchronous sequential circuits, the transition from one state to another is initiated by the
change in the primary inputs; there is no external synchronization. The memory commonly used
in asynchronous sequential circuits are time-delayed devices, usually implemented by feedback
among logic gates. Thus, asynchronous sequential circuits may be regarded as combinational
circuits with feedback. Because of the feedback among logic gates, asynchronous sequential
circuits may, at times, become unstable due to transient conditions. The instability problem
imposes many difficulties on the designer. Hence, they are not as commonly used as
synchronous systems.

Fundamental Mode Circuits assumes that:

1. The input variables change only when the circuit is stable
2. Only one input variable can change at a giventime
3. Inputs are levels are not pulses

A pulse mode circuit assumes that:

1. The input variables are pulses instead of levels
2. The width of the pulses is long enough for the circuit to respond to the input
3. The pulse width must not be so long that is still present after the new state is reached.

Latches and flip-flops

Latches and flip-flops are the basic elements for storing information. One latch or flip-
flop can store one bit of information. The main difference between latches and flip-flops is that
for latches, their outputs are constantly affected by their inputs as long as the enable signal is
asserted. In other words, when they are enabled, their content changes immediately when their
inputs change. Flip-flops, on the other hand, have their content change only either at the rising or
falling edge of the enable signal. This enable signal is usually the controlling clock signal. After
the rising or falling edge of the clock, the flip-flop content remains constant even if the input
changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major
differences in these flip-flop types are the number of inputs they have and how they change state.
For each type, there are also different variations that enhance their operations. In this chapter, we

will look at the operations of the various latches and flip-flops.the flip-flops has two outputs,
labeled Q and Q°. the Q output is the normal output of the flip flop and Q° is the inverted output.

— normal output

v s Immwverted
output

Figure: basic symbol of flipflop

A latch may be an active-high input latch or an active -LOW input latch.active —-HIGH
means that the SET and RESET inputs are normally resting in the low state and one of them will
be pulsed high whenever we want to change latch outputs.

SR latch:

The latch has two outputs Q and Q. When the circuit is switched on the latch may enter
into any state. If Q=1, then Q‘=0, which is called SET state. If Q=0, then Q‘=1, which is called
RESET state. Whether the latch is in SET state or RESET state, it will continue to remain in the
same state, as long as the power is not switched off. But the latch is not an useful circuit, since
there is no way of entering the desired input. It is the fundamental building block in constructing
flip-flops, as explained in the following sections

NAND latch

NAND latch is the fundamental building block in constructing a flip-flop. It has the
property of holding on to any previous output, as long as it is not disturbed.

The opration of NAND latch is the reverse of the operation of NOR latch.if 0°s are
replaced by 1°s and 1°s are replaced by 0°s we get the same truth table as that of the NOR latch

shown

s— ns o>
e] na Do

NOR latch

Function
Storage State

Reset
Set

Indeterminate
State

The analysis of the operation of the active-HIGHNOR latch can be summarized as follows.

SET=0, RESET=0: this is normal resting state of the NOR latch and it has no effect on the
output state. Q and Q° will remain in whatever stste they were prior to the occurrence of this
input condition.

SET=1, RESET=0: this will always set Q=1, where it will remain even after SET returnsto 0
SET=0, RESET=1: this will always reset Q=0, where it will remain even after RESET
returns to O

SET=1,RESET=1; this condition tries to SET and RESET the latch at the same time, and it
produces Q=Q=0. If the inputs are returned to zero simultaneously, the resulting output stste
is erratic and unpredictable. This input condition should not be used.

The SET and RESET inputs are normally in the LOW state and one of them will be pulsed
HIGH. Whenever we want to change the latch outputs..

RS Flip-flop:

The basic flip-flop is a one bit memory cell that gives the fundamental idea of memory
device. It constructed using two NAND gates. The two NAND gates N1 andN2 are connected
such that, output of N1 is connected to input of N2 and output of N2 to input of N1. These
form the feedback path the inputs are S and R, and outputs are Q and Q°. The logic diagram and
the block diagram of R-S flip-flop with clocked input

DarDos

2

a) Logic diagram b) Block diagram

Figure: RS Flip-flop

The flip-flop can be made to respond only during the occurrence of clock pulse by adding
two NAND gates to the input latch. So synchronization is achieved. i.e., flip-flops are
allowed to change their states only at particular instant of time. The clock pulses are
generated by a clock pulse generator. The flip-flops are affected only with the arrival of
clock pulse.

Operation:

1. When CP=0 the output of N3 and N4 are 1 regardless of the value of S and R. This is
given as input to N1 and N2. This makes the previous value of Q and Q‘unchanged.

2. When CP=1 the information at S and R inputs are allowed to reach the latch and
change of state in flip-flop takes place.

3. CP=1, S=1, R=0 gives the SET state i.e., Q=1, Q*=0.

4. CP=1, S=0, R=1 gives the RESET state i.e., Q=0, Q*=I.
5. CP=1, S=0, R=0 does not affect the state of flip-flop.

6. CP=1, S=1, R=1 is not allowed, because it is not able to determine the next state. This
condition is said to be a -race conditionll.

In the logic symbol CP input is marked with a triangle. It indicates the circuit responds to
an input change from 0 to 1. The characteristic table gives the operation conditions of flip-flop.
Q(t) is the present state maintained in the flip-flop at time _t°. Q(t+1) is the state after the
occurrence of clock pulse.

Truth table

Q1 Comments
Q No change
0 Reset/ clear
1 Set

= Not allowed

Edge triggered RS flip-flop:

Some flip-flops have an RC circuit at the input next to the clock pulse. By the design of the
circuit the R-C time constant is much smaller than the width of the clock pulse. So the output

changes will occur only at specific level of clock pulse. The capacitor gets fully charged when
clock pulse goes from low to high. This change produces a narrow positive spike. Later at the
trailing edge it produces narrow negative spike. This operation is called edge triggering, as the
flip-flop responds only at the changing state of clock pulse. If output transition occurs at rising
edge of clock pulse (0L11), it is called positively edge triggering. If it occurs at trailing edge (107
0) it is called negative edge triggering. Figure shows the logic and block diagram.

>

Q

(=]
s L=}
N1
LIl Ml, b) Block diagram of positive edge triggered flip-flop
CP
'
R

N2 Q

s —

— =4

—r a ——

a) Logic diagram of edge triggered RS flip-flop
) Block diagram of negative edge triggered flip-flop

Figure: Edge triggered RS flip-flop
D flip-flop:

The D flip-flop is the modified form of R-S flip-flop. R-S flip-flop is converted to D flip-flop by
adding an inverter between S and R and only one input D is taken instead of S and R. So one
input is D and complement of D is given as another input. The logic diagram and the block
diagram of D flip-flop with clocked input

a) Logic diagram

b) Block diagram

When the clock is low both the NAND gates (N1 and N2) are disabled and Q retains its
last value. When clock is high both the gates are enabled and the input value at D is transferred to
its output Q. D flip-flop is also called -Data flip-flopl.

Truth table

CcP D Q

0 X Previous state
1 0 0
1 1 1

Edge Triggered D Flip-flop:

PRESET

J}Pr

Q

'
Q

? Cir

b) Block diagram

Truth table

PRESET

|

forbidden)

=0
nnn

L8]

1
(8]
L8]

1

1

1

1

U AR ARALD
07770 1)

Figure: truth table, block diagram, logic diagram of edge triggered flip-flop
JK flip-flop (edge triggered JK flip-flop)

The race condition in RS flip-flop, when R=S=1 is eliminated in J-K flip-flop. There is a
feedback from the output to the inputs. Figure 3.4 represents one way of building a JK flip-flop.

N4

o
D

a) Logic diagram b) Block diagram

Truth table

(-, | Comments
Q No change

0 Reset / clear
1 Set

Q. | Complement
toggle.

Figure: JK flip-flop

The J and K are called control inputs, because they determine what the flip-flop does
when a positive clock edge arrives.

Operation:

1. When J=0, K=0 then both N3 and N4 will produce high output and the previous
value of Q and Q° retained as it is.

2. When J=0, K=1, N3 will get an output as 1 and output of N4 depends on the value
of Q. The final output is Q=0, Q=1 i.e., reset state

3. When J=1, K=0 the output of N4 is 1 and N3 depends on the value of Q°. The final
output is Q=1 and Q‘=0 i.e., set state

4. When J=1, K=1 it is possible to set (or) reset the flip-flop depending on the current
state of output. If Q=1, Q=0 then N4 passes ‘0‘to N2 which produces Q‘=1, Q=0 which is
reset state. When J=1, K=1, Q changes to the complement of the last state. The flip-flop is said to
be in the toggle state.

The characteristic equation of the JK flip-flop is:

Qﬂszf = J@“"FQ

JK flip-flop operation28!

har

J K Qnext Comment ' Q Qnext J K Comment

00 Q hold state 0 ' X |No change

1| X Set

X 1 Reset

X 0 No change

T flip-flop:

If the T input is high, the T flip-flop changes state (“toggles™) whenever the clock input is
strobed. If the T input is low, the flip-flop holds the previous value. This behavior is described by
the characteristic equation

Figure : symbol for T flip flop

Quent =T ®Q=TQ+TQ (expanding the XOR operator

When T is held high, the toggle flip-flop divides the clock frequency by two; that is, if
clock frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz This
"divide by" feature has application in various types of digital counters. A T flip-flop can also be
built using a JK flip-flop (J & K pins are connected together and act as T) or D flip-flop (T input
and Previous IS connected to the D input through an XOR gate).

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#cite_note-manokime-28
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table
http://en.wikipedia.org/wiki/XOR_gate

T flip-flop operation!22!

Characteristic table Excitation table

T @ Qnext Comment Q) Qnext T Comment

hold state (no clk) 0 |0 No change

hold state (noclk) |1 |1 No change

toggle Complement

toggle Complement

Flip flop operating characteristics:

The operation characteristics specify the performance, operating requirements, and
operating limitations of the circuits. The operation characteristics mentions here apply to all flip-
flops regardless of the particular form of the circuit.

Propagation Delay Time: is the interval of time required after an input signal has been applied
for the resulting output change to occur.

Set-up Time: is the minimum interval required for the logic levels to be maintained constantly
on the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock pulse in order
for the levels to be reliably clocked into the flip-flop.

Hold Time: is the minimum interval required for the logic levels to remain on the inputs after
the triggering edge of the clock pulse in order for the levels to be reliably clocked. into the flip-
flop.

Maximum Clock Frequency: is the highest rate that a flip-flop can be reliably triggered.
Power Dissipation: is the total power consumption of the device. It is equal to product of supply
voltage (Vcc) and the current (lcc).

P:Vcc.lcc

The power dissipation of a flip flop is usually in mw.

Pulse Widths: are the minimum pulse widths specified by the manufacturer for the Clock, SET
and CLEAR inputs.

Clock transition times: for reliable triggering, the clock waveform transition times should be
kept very short. If the clock signal takes too long to make the transitions from one level to other,
the flip flop may either triggering erratically or not trigger at all.

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#cite_note-manokime-28
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table

Race around Condition

The inherent difficulty of an S-R flip-flop (i.e., S = R = 1) is eliminated by using the
feedback connections from the outputs to the inputs of gate 1 and gate 2 as shown in Figure.
Truth tables in figure were formed with the assumption that the inputs do not change during the
clock pulse (CLK = 1). But the consideration is not true because of the feedback connections

Trailing or negative ed

i /

"_T:!

C T
Consider, for example, that the inputs are J = K =1 and Q = 1, and a pulse as shown in
Figure is applied at the clock input.
After a time interval t equal to the propagation delay through two NAND gates in series,
the outputs will change to Q = 0. So now we have J=K =1and Q =0.
After another time interval of t the output will change back to Q = 1. Hence, we
conclude that for the time duration of tP of the clock pulse, the output will oscillate
between 0 and 1. Hence, at the end of the clock pulse, the value of the output is not
certain. This situation is referred to as a race-around condition.
Generally, the propagation delay of TTL gates is of the order of nanoseconds. So
if the clock pulse is of the order of microseconds, then the output will change thousands
of times within the clock pulse.
This race-around condition can be avoided if tp<t < T. Due to the small propagation
delay of the ICs it may be difficult to satisfy the above condition.
A more practical way to avoid the problem is to use the master-slave (M-S) configuration
as discussed below.

Applications of flip-flops:

Frequency Division: When a pulse waveform is applied to the clock input of a J-K flip-
flop that is connected to toggle, the Q output is a square wave with half the frequency of the
clock input. If more flip-flops are connected together as shown in the figure below, further
division of the clock frequency can be achieved

Parallel data storage: a group of flip-flops is called register. To store data of N bits, N
flip-flops are required. Since the data is available in parallel form. When a clock pulse is applied
to all flip-flops simultaneously, these bits will transfer will be transferred to the Q outputs of the
flip flops.

Serial data storage: to store data of N bits available in serial form, N number of D-flip-
flops is connected in cascade. The clock signal is connected to all the flip-flops. The serial data is
applied to the D input terminal of the first flip-flop.

Transfer of data: data stored in flip-flops may be transferred out in a serial fashion, i.e.,
bit-by-bit from the output of one flip-flops or may be transferred out in parallel form.

Excitation Tables:

Previous State -> Present State “

Q-0 0
0-=1 1
1->0 o
1->1 1

PreviousState -> PresentState | ____J | _K__|

0-=0
0->1
1->0
1->1

Previous State -> Present State —“

0->0 0
0->1 1
1->0 0
1->1 X

Previous State -> Present State

0-=0
0->1
120

X
0
1
0

Conversions of flip-flops:

Clonversion -
Logic {(given)

Twpe B FF (desired)

The key here is to use the excitation table, which shows the necessary triggering signal
(S,R,J,K, D and T) for a desired flip-flop state transition :

Qe Qw1 |S R

0
1
0
1

Convert a D-FF to a T-FF:

D-FF

D
IZ()ck

We need to design the circuit to generate the triggering signal D as a function of T and Q:
. Consider the excitation table:

D = f(T,Q).

Qi Qi

0
1
0
1

Treating as a function of and current FF state , we have

.‘D

T
D=TQ+TQ =T®Q clock |_

Convert a RS-FF to a D-FF:

We need to design the circuit to generate the triggering signals S and R as functions of
and consider the excitation table:

R

‘ D

0

% 1
0

1

clock

The desired signal and can be obtained as functions of and current FF state from
the Karnaugh maps:

D
R

clock

Convert a RS-FF to a JK-FF:
We need to design the circuit to generate the triggering signals S and R as functions of, J,

K.
Consider the excitation table: The desired signal and as functions of, and current FF state

can be obtained from the Karnaugh maps:

®,

-

K

t+1
0
1
0
1

The Master-Slave JK Flip-flop:

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a
series configuration with the slave having an inverted clock pulse. The outputs from Q
and Q from the "Slave" flip-flop are fed back to the inputs of the "Master" with the outputs of the
"Master" flip-flop being connected to the two inputs of the "Slave" flip-flop. This feedback
configuration from the slave's output to the master's input gives the characteristic toggle of the
JK flip-flop as shown below.

The input signals J and K are connected to the gated "master” SR flip-flop which "locks™
the input condition while the clock (CIk) input is "HIGH™" at logic level "1". As the clock input of
the "slave™ flip-flop is the inverse (complement) of the "master” clock input, the "slave™ SR flip-
flop does not toggle. The outputs from the "master” flip-flop are only "seen" by the gated "slave"
flip-flop when the clock input goes "LOW" to logic level "0". When the clock is "LOW", the
outputs from the "master” flip-flop are latched and any additional changes to its inputs are
ignored. The gated "slave" flip-flop now responds to the state of its inputs passed over by the
"master" section. Then on the "Low-to-High™ transition of the clock pulse the inputs of the
"master” flip-flop are fed through to the gated inputs of the "slave™ flip-flop and on the "High-to-
Low" transition the same inputs are reflected on the output of the "slave” making this type of
flip-flop edge or pulse-triggered. Then, the circuit accepts input data when the clock signal is
"HIGH", and passes the data to the output on the falling-edge of the clock signal. In other words,
the Master-Slave JK Flip-flop is a "Synchronous" device as it only passes data with the timing of
the clock signal.

Sequential Circuit Design

e Steps in the design process for sequential circuits
e State Diagrams and State Tables
e Examples

e Stepsin Design of a Sequential Circuit
1 Specification — A description of the sequential circuit. Should include a detailing of the
inputs, the outputs, and the operation. Possibly assumes that you have knowledge of digital
system basics.
2. Formulation: Generate a state diagram and/or a state table from the statement of the problem.
3. State Assignment: From a state table assign binary codes to the states.
4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit and generate
the needed input for the required state transitions
5. Output Equation Generation: Derive output logic equations for generation of the output from
the inputs and current state.
6. Optimization: Optimize the input and output equations. Today, CAD systems are typically
used for this in real systems.
7. Technology Mapping: Generate a logic diagram of the circuit using ANDs, ORs, Inverters,
and F/Fs.
8. Verification: Use a HDL to verify the design.
Mealy and Moore
e Sequential machines are typically classified as either a Mealy machine or a Moore
machine implementation.
Moore machine: The outputs of the circuit depend only upon the current state ofthe
circuit.
Mealy machine: The outputs of the circuit depend upon both the current state ofthe
circuit and the inputs.

An example to go through the steps

The specification: The circuit will have one input, X, and one output, Z. The output Z will be 0
except when the input sequence 1101 are the last 4 inputs received on X. In that case it will be a
1

Generation of a state diagram

e Create states and meaning for them.
State A — the last input was a 0 and previous inputs unknown. Can also be the reset state.
State B —the last input was a 1 and the previous input was a 0. The start of a new sequence
possibly.

e Capture this in a state diagram

Capture this in a state diagram

Circles represent the states

Lines and arcs represent the transition between states.

The notation Input/output on the line or arc specifies the input that causes this transition
and the output for this change of state.

Add a state C — Have detected the input sequence 11 which is the start of the sequence

0/0

71 Add astate D
State D — have detected the 3™ input in the start of a sequence, a 0, now having
110. From State D, if the next input is a 1 the sequence has been detected and a 1
is outpult.

"' The previous diagram was incomplete.

71 Ineach state the next input could be a 0 ora 1. This must be included

e The state table

e This can be done directly from the state diagram

Next State
Prresent State | X =0 X=1

A
B
C
D

e Now need to do a state assignment
Select a state assignment

e Will select a grayencoding

e For this state A will be encoded 00, state B 01, state C 11 and state D 10

Next State
Prresent State | X=0 | X=I

Output

X=0 | X=I

00 00 01
0] 00 I
[10 [
10 00 01

Flip-flop input equations

e Generate the equations for the flip-flop inputs
e Generate the Do equation
QuQ
00 01 11 10

0 (1\

| : _Ef)

e Generate the D1 equation

0

] B

The output equation
e The next step is to generate the equation for the output Z and what is needed to generate
it.
e Create a K-map from the truth table.

Qi
X N0 01 11T 10

Now map to a circuit

e The circuit has 2 D type F/Fs

L

Shift registers:

In digital circuits, a shift register is a cascade of flip-flops sharing the same clock, in
which the output of each flip-flop is connected to the "data" input of the next flip-flop in the
chain, resulting in a circuit that shifts by one position the "bit array" stored in it, shifting in the
data present at its input and shifting out the last bit in the array, at each transition of the clock
input. More generally, a shift register may be multidimensional, such that its "data in" and stage
outputs are themselves bit arrays: this is implemented simply by running several shift registers of
the same bit-length in parallel.

Shift registers can have both parallel and serial inputs and outputs. These are often configured

as serial-in, parallel-out (SIPO) or as parallel-in, serial-out (PI1SO). There are also types that

have both serial and parallel input and types with serial and parallel output. There are also bi-

directional shift registers which allow shifting in both directions: L—R or R—L. The serial

input and last output of a shift register can also be connected to create a circular shift register
Shift registers are a type of logic circuits closely related to counters. They are basically for the

storage and transfer of digital data.

Buffer register:

The buffer register is the simple set of registers. It is simply stores the binary word. The buffer

may be controlled buffer. Most of the buffer registers used D Flip-flops.

o W

EZ ock

-

Figure: logic diagram of 4-bit buffer register
The figure shows a 4-bit buffer register. The binary word to be stored is applied to the data
terminals. On the application of clock pulse, the output word becomes the same as the word
applied at the terminals. i.e., the input word is loaded into the register by the application of clock
pulse.
When the positive clock edge arrives, the stored word becomes:
Q4Q3Q2Q1=X4X3X2X1
Q=X
Controlled buffer register:
If CLRgoes LOW, all the FFs are RESET and the output becomes, Q=0000.
When CLR is HIGH, the register is ready for action. LOAD is the control input. When
LOAD is HIGH, the data bits X can reach the D inputs of FF*s.
Q4Q3Q2Q1=X4X3X2X1
Q=X

When load is low, the X bits cannot reach the FF°s.

Data transmission in shift registers:

datain __, .. data out

clock

stage A | stage B stage C | stage D

Serial-in, serial-out shift register with 4-stages

D
|

data in - » data out

clock __J
mode -

! ! ! !

Q. Qg Qc Qo

Parallel-in, parallel-out shitt register with 4-stages

data in -

clock .}

stage A stage D

) !

Q. Qs Q- Qb

Serial-in, parallel-out shift register with 4-stages

D, Dg Dc Dp

} } | }

datain __, ~ data out

clock |

stage A stage B stage C stage D

Parallel-in, serial-out shift register with 4-stages

A number of ff*'s connected together such that data may be shifted into and shifted out of them is
called shift register. data may be shifted into or out of the register in serial form or in parallel
form. There are four basic types of shift registers.

1. Serial in, serial out, shift right, shift registers

2. - Serial in, serial out, shift left, shift registers

3. Parallel in, serial out shift registers

4. Parallel in, parallel out shift registers

Serial IN, serial OUT, shift right, shift left register:

The logic diagram of 4-bit serial in serial out, right shift register with four stages. The register
can store four bits of data. Serial data is applied at the input D of the first FF. the Q output of the

first FF is connected to the D input of another FF. the data is outputted from the Q terminal of
the last FF.

11

0 [0/[0

Serial

D:t”a_ D Q L. q
ain FEA Serial

Data out
CLEK

Clock [

When serial data is transferred into a register, each new bit is clocked into the first FF at the
positive going edge of each clock pulse. The bit that was previously stored by the first FF is

transferred to the second FF. the bit that was stored by the Second FF is transferred to the third
FF.

Serial-in, parallel-out, shift register:

A

- >
Data out

Clear l I

Clock R
- -

In this type of register, the data bits are entered into the register serially, but the data stored in
the register is shifted out in parallel form.

Once the data bits are stored, each bit appears on its respective output line and all bits are
available simultaneously, rather than on a bit-by-bit basis with the serial output. The serial-in,

parallel out, shift register can be used as serial-in, serial out, shift register if the output is taken
from the Q terminal of the last FF.

Parallel-in, serial-out, shift register:

For a parallel-in, serial out, shift register, the data bits are entered simultaneously into their
respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial data
bits are transferred out of the register serially. On a bit-by-bit basis over a single line.

There are four data lines A,B,C,D through which the data is entered into the register in
parallel form. The signal shift/ load allows the data to be entered in parallel form into the register
and the data is shifted out serially from terminalQ4

Parallel-in, parallel-out, shift register
Parallel oulpuls

QA OB QC QD
i ‘ §)

Parallel inputs

In a parallel-in, parallel-out shift register, the data is entered into the register in parallel form,
and also the data is taken out of the register in parallel form. Data is applied to the D input
terminals of the FF‘s. When a clock pulse is applied, at the positive going edge of the pulse, the
D inputs are shifted into the Q outputs of the FFs. The register now stores the data. The stored
data is available instantaneously for shifting out in parallel form.

Bidirectional shift register:

A bidirectional shift register is one which the data bits can be shifted from left to right
or from right to left. A fig shows the logic diagram of a 4-bit serial-in, serial out, bidirectional
shift register. Right/left is the mode signal, when right /left is a 1, the logic circuit works as a
shift-register.the bidirectional operation is achieved by using the mode signal and two NAND
gates and one OR gate for each stage.

A HIGH on the right/left control input enables the AND gates G1, G2, G3 and G4 and
disables the AND gates G5,G6,G7 and G8, and the state of Q output of each FF is passed
through the gate to the D input of the following FF. when a clock pulse occurs, the data bits are
then effectively shifted one place to the right. A LOW on the right/left control inputs enables the
AND gates G5, G6, G7 and G8 and disables the And gates G1, G2, G3 and G4 and the Q output
of each FF is passed to the D input of the preceding FF. when a clock pulse occurs, the data bits
are then effectively shifted one place to the left. Hence, the circuit works as a bidirectional shift
register

LEFT/ RIGHT

Output data

CLEAR

CLK

Input data

Figure: logic diagram of a 4-bit bidirectional shift register

Universal shift register:

A register is capable of shifting in one direction only is a unidirectional shift register. One that
can shift both directions is a bidirectional shift register. If the register has both shifts and parallel
load capabilities, it is referred to as a universal shift registers. Universal shift register is a
bidirectional register, whose input can be either in serial form or in parallel form and whose
output also can be in serial form or | parallel form.

The most general shift register has the following capabilities.

1. Aclear control to clear the register to 0

2. Aclock input to synchronize the operations
3. Ashift-right control to enable the shift-right operation and serial input and output lines
associated with the shift-right

A shift-left control to enable the shift-left operation and serial input and output lines
associated with the shift-left

A parallel loads control to enable a parallel transfer and the n input lines associated with
the parallel transfer

N parallel output lines

A control state that leaves the information in the register unchanged in the presence of
the clock.

A universal shift register can be realized using multiplexers. The below fig shows the logic
diagram of a 4-bit universal shift register that has all capabilities. It consists of 4 D flip-flops and
four multiplexers. The four multiplexers have two common selection inputs s1 and sO. Input 0 in
each multiplexer is selected when S1S0=00, input 1 is selected when S1S0=01 and input 2 is
selected when S1S0=10 and input 4 is selected when S1S0=11. The selection inputs control the
mode of operation of the register according to the functions entries. When S1S0=0, the present
value of the register is applied to the D inputs of flip-flops. The condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into
each flip-flop the binary value it held previously, and no change of state occurs. When S1S0=01,
terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flop. This causes a
shift-right operation, with serial input transferred into flip-flopA4. When S1S0=10, a shift left
operation results with the other serial input going into flip-flop Al. Finally when S1S0=11, the
binary information on the parallel input lines is transferred into the register simultaneously
during the next clock cycle

Parallel outputs

A, A,

=

Q Q

MUX
3210

.

Serial -
rlogiod e Tor

shirt-n
9 lq Iy l2 shift-left

~Nas

4-bit universal shift register
Figure: logic diagram 4-bit universal shift register

Function table for theregister

mode control

register operation

No change
Shift Right
Shift left

Parallel load

Counters:

Counter is a device which stores (and sometimes displays) the number of times
particular event or process has occurred, often in relationship to a clock signal. A Digital counter
is a set of flip flops whose state change in response to pulses applied at the input to the counter.
Counters may be asynchronous counters or synchronous counters. Asynchronous counters are
also called ripple counters

In electronics counters can be implemented quite easily using register-type circuits such as
the flip-flops and a wide variety of classifications exist:

Asynchronous (ripple) counter — changing state bits are used as clocks to subsequent state
flip-flops

Synchronous counter — all state bits change under control of a singleclock

Decade counter — counts through ten states per stage

Up/down counter — counts both up and down, under command of a control input

Ring counter — formed by a shift register with feedback connection ina ring

Johnson counter — a twisted ring counter

Cascaded counter

Modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature, and count
in natural binary Many types of counter circuits are available as digital building blocks, for
example a number of chips in the 4000 series implement different counters.

Occasionally there are advantages to using a counting sequence other than the natural binary
sequence such as the binary coded decimal counter, a linear feed-back shift register counter, or
a gray-code counter.

Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.

Asynchronous counters:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed
from its own inverted output. This circuit can store one bit, and hence can count from zero to one
before it overflows (starts over from 0). This counter will increment once for every clock cycle
and takes two clock cycles to overflow, so every cycle it will alternate between a transition from
0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at
exactly half the frequency of the input clock. If this output is then used as the clock signal for a
similarly arranged D flip-flop (remembering to invert the output to the input), one will get
another 1 bit counter that counts half as fast. Putting them together yields a two-bit counter:

Two-bit ripple up-counter using negative edge triggered flip flop:

Two bit ripple counter used two flip-flops. There are four possible states from 2 — bit up-
counting l.e. 00, 01, 10 and 11.

The counter is initially assumed to be at a state 00 where the outputs of the tow flip-flops
are noted as Q1Qo. Where Q1 forms the MSB and Qo forms the LSB.

For the negative edge of the first clock pulse, output of the first flip-flop FF1 toggles its
state. Thus Q1 remains at 0 and Qo toggles to 1 and the counter state are now read as O1.

During the next negative edge of the input clock pulse FF1 toggles and Qo = 0. The output
QO being a clock signal for the second flip-flop FF, and the present transition acts as a negative

edge for FF. thus toggles its state Q: = 1. The counter state is now read as 10.

For the next negative edge of the input clock to FFy output QO toggles to 1. But this
transition from O to 1 being a positive edge for FF, output Q1 remains at 1. The counter state is
now read as 11.

For the next negative edge of the input clock, Qo toggles to 0. This transition from 1 to 0
acts as a negative edge clock for FF; and its output Q1 toggles to 0. Thus the starting state 00 is
attained. Figure shown below

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#JK_flip-flop
http://en.wikipedia.org/wiki/Duty_cycle

0 2 3 4 5 6 7 0

A 2-bit down-counter counts in the order 0,3,2,1,0,1....... e, 00,11,10,01,00,11etc. the
above fig. shows ripple down counter, using negative edge triggered J-K FFs and its timing
diagram.
e For down counting, Q1° of FF1 is connected to the clock of Ff2. Let initially all the FF1
toggles, so, Q1 goes froma0to aland Q1 goesfromaltoaO.

The negative-going signal at Q1° is applied to the clock input of FF2, toggles Ff2 and,
therefore, Q2 goes from a 0 to a 1.s0, after one clock pulse Q2=1 and Q1=1, l.e., the state
of the counter is 11.

At the negative-going edge of the second clock pulse, Q1 changes froma 1 to a 0 and
Ql‘fromaOtoal.

This positive-going signal at Q1° does not affect FF2 and, therefore, Q2 remains at a 1.
Hence , the state of the counter after second clock pulse is 10

At the negative going edge of the third clock pulse, FF1 toggles. So Q1, goes froma 0 to
a 1 and Q1° from 1 to 0. This negative going signal at Q1° toggles FF2 and, so, Q2
changes from 1 to 0, hence, the state of the counter after the third clock pulse is 01.

At the negative going edge of the fourth clock pulse, FF1 toggles. So Q1, goes froma 1
toa0and Q1° from O to 1. . This positive going signal at Q1° does not affect FF2 and, so,
Q2 remains at 0, hence, the state of the counter after the fourth clock pulse is 00.

Two-bit ripple up-down counter using negative edge triggered flip flop:

Up 6;»:\
Qu

Figure: asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop:

e As the name indicates an up-down counter is a counter which can count both in upward
and downward directions. An up-down counter is also called a forward/backward counter
or a bidirectional counter. So, a control signal or a mode signal M is required to choose
the direction of count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and
when M=0 for down counting, Q1° is transmitted to clock of FF2. This is achieved by
using two AND gates and one OR gates. The external clock signal is applied to FF1.

e Clock signal to FF2= (Q1.Up)+(Q1°. Down)=Q1lm+Q1‘M*

Design of Asynchronous counters:

To design a asynchronous counter, first we write the sequence , then tabulate the values of
reset signal R for various states of the counter and obtain the minimal expression for R and R*
using K-Map or any other method. Provide a feedback such that R and R resets all the FF‘s after
the desired count

Design of a Mod-6 asynchronous counter using T FFs:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth
clock pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000
because of the feedback provided. it is -divide by-6-counterll, in the sense that it divides the
input clock frequency by 6.it requires three FFs, because the smallest value of n satisfying the
conditionN<2" is n=3; three FFs can have 8 possible states, out of which only six are utilized and
the remaining two states 110and 111, are invalid. If initially the counter is in 000 state, then after
the sixth clock pulse, it goes to 001, after the second clock pulse, it goes to 010, and so on.

1 1
Ql
T1 | |, Q2

. FF1

FF2

P>

Qa1l’

CLR

Cloek I 1| LT LI LI LI

o1 —J1 L1 L1 L

oz | [
L3 l -

R I

After sixth clock pulse it goes to 000. For the design, write the truth table with present state
outputs Q3, Q2 and QL1 as the variables, and reset R as the output and obtain an expression for R
in terms of Q3, Q2, and Qlthat decides the feedback into be provided. From the truth table,
R=Q3Q2. For active-low Reset, R* is used. The reset pulse is of very short duration, of the order
of nanoseconds and it is equal to the propagation delay time of the NAND gate used. The
expression for R can also be determined as follows.

R=0 for 000 to 101, R=1 for 110, and R=X=for111
Therefore,

R=Q3Q2Q1+Q3Q2Q1=Q3Q2
The logic diagram and timing diagram of Mod-6 counter is shown in the above fig.

The truth table is as shown in below.

States

Q3

O¢ ¢ O¢

7 0 0 0 0

Design of a mod-10 asynchronous counter using T-flip-flops:

A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10
counter. It requires four flip-flops (condition 10 <2" is n=4). So, there are 16 possible states, out
of which ten are valid and remaining six are invalid. The counter has ten stable state, 0000
through 1001, i.e., it counts from O to 9. The initial state is 0000 and after nine clock pulses it
goes to 1001. When the tenth clock pulse is applied, the counter goes to state 1010 temporarily,
but because of the feedback provided, it resets to initial state 0000. So, there will be a glitch in
the waveform of Q2. The state 1010 is a temporary state for which the reset signal R=1, R=0 for
0000 to 1001, and R=C for 1011 to 1111.

L

1
L-13 Q4
[

a4’

[CLR

The count table and the K-Map for reset are shown in fig. from the K-Map R=Q4Q2. So,
feedback is provided from second and fourth FFs. For active —HIGH reset, Q4Q2 is applied to
the clear terminal. For active-LOW reset Q4 Q2 is connected CLR isof all Flip=flops.

Count

Q4 Q3 Q2

Q201
Q403 N\ 00 01 11 10
00
01
11
10

(@)

P OO ~NO O, WN -

O OPrRPOO0OO0OO0OO0OOCOoOOo
OPrRrPrORFRPPFPOFPLPOOOO
OO O0ORrRrPFPOORFrL,rEFrL,rOOo

Synchronous counters:

Asynchronous counters are serial counters. They are slow because each FF can change state
only if all the preceding FFs have changed their state. if the clock frequency is very high, the
asynchronous counter may skip some of the states. This problem is overcome in synchronous
counters or parallel counters. Synchronous counters are counters in which all the flip flops are
triggered simultaneously by the clock pulses Synchronous counters have a common clock pulse
applied simultaneously to all flip-flops.[1 A 2-Bit Synchronous Binary Counter

HIGH

Q()

0, CLK ﬂ 7 T‘

9
Design of synchronous counters:

For a systematic design of synchronous counters. The following procedure is used.

Step 1:State Diagram: draw the state diagram showing all the possible states state diagram which
also be called nth transition diagrams, is a graphical means of depicting the sequence of states
through which the counter progresses.

Step2: number of flip-flops: based on the description of the problem, determine the required
number n of the flip-flops- the smallest value of n is such that the number of states N<2"--- and
the desired counting sequence.

Step3: choice of flip-flops excitation table: select the type of flip-flop to be used and write the
excitation table. An excitation table is a table that lists the present state (ps) , the next state(ns)
and required excitations.

Step4: minimal expressions for excitations: obtain the minimal expressions for the excitations of
the FF using K-maps drawn for the excitation of the flip-flops in terms of the present states and
inputs.

Stepb: logic diagram: draw a logic diagram based on the minimal expressions

Design of a synchronous 3-bit up-down counter using JK flip-flops:

Stepl: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8
states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares. For
selecting up and down modes, a control or mode signal M is required. When the mode signal
M=1 and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and the
excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig.

PS

3
o)
o
®

NS required excitations
J3 |K3 |J2 | K2

w
N
=
w
N
=
[
iy
8

PR RP PP PR Rklo|lololo|lololo|lolo
PRk rlolololor|r|k r|lololololo
Rl |lolo|lr kool r|lololkr lrlololo

Plo|Rk|o|r|or| ok o|r|o|r|lolr|lolz
olr|kr|lr|rRr|r olr|loololololo|+|lo
olr|r|lo|r|o|lo|r|olr|r|lo|lr|lo|o|+|o
o|lo|r|r|o|o|r|r ook r|o|lolr|r|lo

XX |X[X[X[X|X|X[|FPOOOO ook

Rlo|lo|o|o|o|o||x | x|x|x|x]|x]|x|x
X|X|X|X|kr|lolor|X|xX|x|x|—~|lolo|r
Rlolo|k|x|[x|x|xX|r|o|lo|k|x|x|x|x
X | X|P| R X[X [R,RrX|X|kr|Rr|X|x|k|~
PR (X X |k|Rr[X|[X|k|Rr|X|X|k|,|x|x

Step4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and
K1=1, because all the entries for Jland K1 are either X or 1. The K-maps for J3, K3,J2 and K2
based on the excitation table and the minimal expression obtained from them are shown in fig.

00 01 11 10

Q3Q | Q1M
Nig

1y
X X
X] X
B

Step5: draw the logic diagram: a logic diagram using those minimal expressions can be drawn as
shown in fig.

Jo

= C

o,
K()
o>‘ YOW N

Design of a synchronous modulo-6 gray cod counter:

Step 1: the number of flip-flops: we know that the counting sequence for a modulo-6 gray code
counter is 000, 001, 011, 010, 110, and 111. It requires n=3FFs (N<2", i.e., 6<2%). 3 FFs can have
8 states. So the remaining two states 101 and 100 are invalid. The entries for excitation
corresponding to invalid states are don‘t cares.

Step2: the state diagram: the state diagram of the mod-6 gray code converter is drawn as shown

in fig.

® @@
L)

|
@@

Step3: type of flip-flop and the excitation table: T flip-flops are selected and the excitation table
of the mod-6 gray code counter using T-flip-flops is written as shown in fig.

required
excitations
T2
0

Step4: The minimal expressions: the K-maps for excitations of FFs T3,T2,and T1 in terms of

outputs of FFs Q3,Q2, and Q1, their minimization and the minimal expressions for excitations
obtained from them are shown if fig

B
oo

1

(B) Map for K,
o, = 1

B
o

>

=Y

e

5

(aD Map for Ke
g = A

BC
11 o

> O

Y

> 1

=
(&) Map for Jo

() Map for Ho
do = AB e = A

Stepb5: the logic

diagram: the logic diagram based on those minimal expressions is drawn
shown in fig.

Q301 * . Q3Q1
az2'al ﬁ) " a3'azal ﬁ}
T oL {— ™ a2

. FF2
FFL -
LK CLK
a1

Qz

Design of a synchronous BCD Up-Down counter using FFs:

Stepl: the number of flip-flops: a BCD counter is a mod-10 counter has 10 states (0000 through
1001) and so it requires n=4FFs(N<2", i.e., 10<2%). 4 FFS can have 16 states. So out of 16 states,
six states (1010 through 1111) are invalid. For selecting up and down mode, a control or mode
signal M is required. , it counts up when M=1 and counts down when M=0. The clock signal is
applied to all FFs.

Step2: the state diagram: The state diagram of the mod-10 up-down counter is drawn as shown
in fig.

Step3: types of flip-flops and excitation table: T flip-flops are selected and the excitation table of
the modulo-10 up down counter using T flip-flops is drawn as shown in fig.

The remaining minterms are don‘t cares(>.d(20,21,22,23,24,25,26,37,28,29,30,31)) from
the excitation table we can see that T1=1 and the expression for T4,T3,T2 are asfollows.
T4=Ym(0,15,16,19)+d(20,21,22.23,24,25,26,27,28,29,30,31)
T3=Ym(7,15,16,8)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T2=Ym(3,4,7,8,11,12,15,16)+d(20,21,22,23,24,25,26,27,28,29,30,31)

PS NS

3
o}
o
®

required excitations
T4 | T3 | T2 | T1

I
w
N
=
I
w
N
=

PRk |k|lo|lojo|lo|o|o|o|o|o|o|o|o|o|o|o|o|0
o|o|o|o|r|r Pk Ik Irkr R o|loo|looloo|o0
o|o|o|o|r|r Rk olo|o|olr|r k| k| o|loo|o0
Pl lo|o|r|rkr|o|lo|r|r|o|olr|r|lo|or|r o0
Rlo|r|o|r|o|r|o|lr ok ok ok ok ok oz
Oo|lr|r|o|rolo|o|o|o|o|o|o|o|o|o|o|o|o 0O
o|o|lo|r|o|lr ||k r L ok ololooloo|o0
o|o|lo|r|o|r|r|o|r|o|o|r|lo|r|r|olr|lolo|o0
o|olr|r|o|lor|r|olor|r|lo|olr| kool O

P OO P OO0OO0OO0OIOCO0O|O0O|0O0|0O0|0O|O0|F

o|lo|o|r|r|o|lojlo|lo|o|lo|r|r|lololo|lolojlo|lo
o|lo|o|r|r|lo|lor|r|lolo|r R ool lrloolo
RlRrRrRrRrRR PR RRRR R R RR R R R

Step4: The minimal expression: since there are 4 state variables and a mode signal, we require 5
variable kmaps. 20 conditions of Q4Q3Q2Q1M are valid and the remaining 12 combinations are
invalid. So the entries for excitations corresponding to those invalid combinations are don‘t
cares. Minimizing K-maps for T2 we get

T 2=Q4Q1‘M+Q4‘QIM+Q2Q1‘M‘+Q3Q1‘M*

Stepb: the logic diagram: the logic diagram based on the above equation is shown in fig.

iy O1M ., . Qs ~ Qs D2 QL M)
Q4 Q1M ™ T G O1M -

-ﬂ
72 OL M =+ I — —
s LM Az . T Q30201M
- 8y T3 a3

FF3

-
"

a3’

Shift register counters:

One of the applications of shift register is that they can be arranged to form several types of
counters. The most widely used shift register counter is ring counter as well as the twisted ring
counter.

Ring counter: this is the simplest shift register counter. The basic ring counter using D flip-
flops is shown in fig. the realization of this counter using JK FFs. The Q output of each stage is
connected to the D flip-flop connected back to the ring counter.

FIGURE: logic diagram of 4-bit ring counter using D flip-flops

Only a single 1 is in the register and is made to circulate around the register as long as clock
pulses are applied. Initially the first FF is present to a 1. So, the initial state is 1000, i.e., Q1=1,
Q2=0,Q3=0,Q4=0. After each clock pulse, the contents of the register are shifted to the right by
one bit and Q4 is shifted back to Q1. The sequence repeats after four clock pulses. The number

of distinct states in the ring counter, i.e., the mod of the ring counter is equal to number of FFs
used in the counter. An n-bit ring counter can count only n bits, where as n-bit ripple counter can
count 2" bits. So, the ring counter is uneconomical compared to a ripple counter but has
advantage of requiring no decoder, since we can read the count by simply noting which FF is set.
Since it is entirely a synchronous operation and requires no gates external FFs, it has the further
advantage of being very fast.

Timing diagram:

State

Shift
Pulses

Qg

e ()

Figure: state diagram

Twisted Ring counter (Johnson counter):

This counter is obtained from a serial-in, serial-out shift register by providing feedback
from the inverted output of the last FF to the D input of the first FF. the Q output of each is
connected to the D input of the next stage, but the Q° output of the last stage is connected to the
D input of the first stage, therefore, the name twisted ring counter. This feedback arrangement
produces a unique sequence of states.

The logic diagram of a 4-bit Johnson counter using D FF is shown in fig. the realization
of the same using J-K FFs is shown in fig.. The state diagram and the sequence table are shown
in figure. The timing diagram of a Johnson counter is shown in figure.

Let initially all the FFs be reset, i.e., the state of the counter be 0000. After each clock
pulse, the level of Q1 is shifted to Q2, the level of Q2to Q3, Q3 to Q4 and the level of Q4‘to QI
and the sequences given in fig.

Shift
Pulses

Figure: Johnson counter with JK flip-flops

Figure: timing diagram

State diagram:

Q1 Q2 Q3 Q4

o

RO OOORRRRO
COcococoorRrRPrRRPROO
cocorRrRRPRRPROOO
corRPRRPRPROOOO
©CO~NOUIAWNBRF

Excitation table
Synthesis of sequential circuits:
The synchronous or clocked sequential circuits are represented by two models.

1. Moore circuit: in this model, the output depends only on the present state of the flip-
flops

2. Meelay circuit: in this model, the output depends on both present state of the flip-
flop. And the inputs.

Sequential circuits are also called finite state machines (FSMs). This name is due to the fast that
the functional behavior of these circuits can be represented using a finite number of states.

State diagram: the state diagram or state graph is a pictorial representation of the relationships
between the present state, the input, the next state, and the output of a sequential circuit. The
state diagram is a pictorial representation of the behavior of a sequential circuit.

The state represented by a circle also called the node or vertex and the transition between
states is indicated by directed lines connecting circle. a directed line connecting a circle with
itself indicates that the next state is the same as the present state. The binary number inside each
circle identifies the state represented by the circle. The direct lines are labeled with two binary
numbers separated by a symbol. The input value is applied during the present state is labeled
after the symbol.

NS,O/P
INPUT X
X=0 X=1
a0 b0
b,1 ¢0
do ¢l
do al

Fig :a) state diagram (meelay circuit) fig: b) state table

In case of moore circuit ,the directed lines are labeled with only one binary number representing
the input that causes the state transition. The output is indicated with in the circle below the
present state, because the output depends only on the present state and not on the input.

NS

INPUT X

X=0 X=1 O/P
a b 0

0
1
0

Fig: a) state diagram (moore circuit) fig:b) state table

Serial binary adder:

Stepl: word statement of the problem: the block diagram of a serial binary adder is shown in
fig. it is a synchronous circuit with two input terminals designated X1and X2 which carry the
two binary numbers to be added and one output terminal Z which represents the sum. The inputs
and outputs consist of fixed-length sequences 0s and 1s.the output of the serial Z; at time tiis a
function of the inputs X1(ti) and Xx(ti) at that time ti-1 and of carry which had been generated at t;-
1. The carry which represent the past history of the serial adder may be a 0 or 1. The circuit has
two states. If one state indicates that carry from the previous addition is a 0, the other state
indicates that the carry from the previous addition isa 1

SERIAL ADDER

Y Y
FF -

Figure: block diagram of serial binary adder

Step2 and 3: state diagram and state table: let a designate the state of the serial adder at t; if a
carry 0 was generated at ti.;, and let b designate the state of the serial adder at t; if carry 1 was
generated at ti.1 the state of the adder at that time when the present inputs are applied is referred
to as the present state(PS) and the state to which the adder goes as a result of the new carry value
is referred to as next state(NS).

The behavior of serial adder may be described by the state diagram and state table.

PS NS,O/P

00/0 o, 010 X2

.‘,' » ' o 10’:'0 O O l l

01/1 (a B 0o 1 o0 1

10/1 11/1 A A0 BO B1 B0
B Al B0 B0 Bl

Figures: serial adder state diagram and state table

If the machine is in state B, i.e., carry from the previous addition is a 1, inputs X;=0 and X>=1
gives sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X:=1 and
X2=0 gives sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X1=1
and X»>=1 gives sum, 1 and carry 0. So the machine remains in state B and outputs a 1. Inputs
X1=0 and X>=0 gives sum, 1 and carry 0. So the machine goes to state A and outputs a 1. The
state table also gives the same information.

Setp4: reduced standard from state table: the machine is already in this form. So no need to
do anything

Stepb: state assignment and transition and output table:
The states, A=0 and B=1 have already been assigned. So, the transition and output table is as

shown.

STEPG6: choose type of FF and excitation table: to write table, select the memory element the
excitation table is as shown in fig.

PS I/P

wn

|/P-FF
D

/P

X
[N
X
N

PP P OROOO||KZ

0]
Z
0
1
1
0
1
0
0
1

PP PP OOOOK
PP, OOFrPEFk OO
POPFPrrOPFr OPRFrOo
PR, PFP,POPEFL OOOo

Sequence detector:
Stepl: word statement of the problem: a sequence detector is a sequential machine which
produces an output 1 every time the desired sequence is detected and an output O at all other
times

Suppose we want to design a sequence detector to detect the sequence 1010 and say that
overlapping is permitted i.e., for example, if the input sequence is 01101010 the corresponding
output sequence is 00000101.

Step2 and 3: state diagram and state table: the state diagram and the state table of the sequence
detector. At the time t1, the machine is assumed to be in the initial state designed arbitrarily as A.
while in this state, the machine can receive first bit input, either a0 o r a 1. If the input bit is 0,
the machine does not start the detection process because the first bit in the desired sequence is a
1. If the input bit isa 1 the detection process starts.

NS,Z

X=0 X=1
A0 B,0
C0 B,0
A0 D,0
C1l B.O

Figure: state diagram and state table of sequence detector

So, the machine goes to state B and outputs a 0. While in state B, the machinery may receive 0 or
1 bit. If the bit is 0, the machine goes to the next state, say state c, because the previous two bits
are 10 which are a part of the valid sequence, and outputs O.. if the bit is a 1, the two bits become
11 and this not a part of the valid sequence

Step4: reduced standard form state table: the machine is already in this form. So no need to do
anything.
Stepb5: state assignment and transition and output table: there are four states therefore two states
variables are required. Two state variables can have a maximum of four states, so, all states are
utilized and thus there are no invalid states. Hence, there are no don‘t cares. Let a=00, B=01,
C=10 and D=11 be the state assignment.

NS(Y1Y2) O/P(2)
PS(yly2 X=0
A=00 O
B=01 1
C=10 O
D=11 1

0
0
0
1

X=
0
0
1
0

1

Step6: choose type of flip-flops and form the excitation table: select the D flip-flops as memory
elements and draw the excitation table.

INPUTS -
/P FFS

I—‘I—‘I—‘I—‘OOOO’(
[y
I—\I—\OOI—‘I—‘OO‘-<
N
I—\OI—\OI—‘OHO‘X
on—xpoon—\oo’.<
[BRN
POPRP OPFRP OFr O
N
OrRr P OOFr OoOOoO|g
[BN
POPFRP ORFR ORFR O|g
N
‘OHOOOOOO‘N

Step7: K-maps and minimal functions: based on the contents of the excitation table , draw the k-
map and simplify them to obtain the minimal expressions for D1 and D2 in terms of y1, y2 and x
as shown in fig. The expression for z (z=y1,y2) can be obtained directly from table

Step8: implementation: the logic diagram based on these minimal expressions

	UNIT - 1
	INTRODUCTION ABOUT DIGITAL SYSTEM
	Characteristics of Digital systems
	Disadvantages of Digital Systems
	NUMBER SYSTEM
	Binary number system:
	Decimal Number system
	Octal Number System
	Hexa Decimal Number System
	Number Base conversions
	=5637.534
	Representation of signed no.s binary arithmetic in computers:
	Representation of signed no.s using 2’s or 1’s complement method:
	Special case in 2’s comp representation:
	Characteristics of 2’s compliment no.s:
	Signed binary numbers:
	2’s compliment Arithmetic:
	1’s compliment of n number:
	1’s compliment arithmetic:
	Binary codes
	Reflective Code
	Sequential Codes
	Non weighted codes
	Excess-3 Code
	Gray Code
	Binary to Gray Conversion
	8421 BCD code (Natural BCD code):
	BCD Addition:
	BCD Subtraction:
	BCD Subtraction using 9’s & 10’s compliment methods:
	Excess-3 Addition:
	Excess -3 (XS-3) Subtraction:
	⁄⁄
	The Gray code (reflective –code):
	Binary to Gray conversion:
	Gray to Binary Conversion:
	XS-3 gray code:
	Checksums:
	Block parity:
	Error –Correcting Codes:
	7- bit Hamming code:
	Alphanumeric Codes:
	Boolean algebra
	Axioms and laws of Boolean algebra
	Complementation law
	AND Law OR Law
	Basic Theorems and Properties of Boolean algebra Commutative law
	Associative law
	Distributive law
	Absorption law
	DeMorgan Theorems
	Redundant Literal Rule
	Consensus Theorem
	Principle of Duality
	Table for Postulates and Theorems of Boolean algebra
	Logic Families and their classifications:
	Classification of Logic Families:
	Fig.1 Classification of Logic Families
	Metal Oxide Semiconductor transistor:
	Explain the Operation of basic CMOS circuit?
	Fig.Classification of MOSFETs
	Operation:
	2 Input NAND gate using CMOS logic
	Operation: (1)
	Fig: Two Input NOR gate circuit using CMOS logic
	(a) Early TTL families:
	(b) Schottky TTL families:
	Characteristics of TTL logic families:
	Characteristics of TTL logic families.
	Note:
	Truth Tables
	Algebraic Manipulation (Minimization of Boolean function)
	• Proof:
	Complement of a Function
	Canonical and Standard Forms
	Definitions
	Minterm
	Maxterm
	Truth Table notation for Minterms and Maxterms
	Canonical Forms
	Example
	Shorthand: ∑ and ∏
	Conversion between Canonical Forms
	Standard Forms
	Conversion of SOP from standard to canonical form Example-1.
	Example-2.

	Digital Logic Gates
	Properties of XOR Gates
	Universal Logic Gates
	NAND as a Universal Gate
	Unit-II Combinational circuits
	Mapping of SOP Expresions:
	Minimizations of SOP expressions:
	Mapping of POS expressions:
	Minimization of POS Expressions:
	Three-variable K-map:
	Minimization of SOP and POS expressions:
	Reading the K-maps:
	k-map AOI logic NAND logic
	Five variable k-map:
	Six variable k-map:
	Prime implicants, Essential Prime implicants, Redundant prime implicants:
	False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s:
	Mapping when the function is not expressed in minterms (maxterms):
	Limitations of Karnaugh maps:
	Quine-Mccluskey Method:
	Combinational Logic Design
	Design Procedure:
	Adders:
	The Full Adder:
	Subtractors:
	The Half-Subtractor:
	The Full-Subtractor:
	Binary Parallel Adder:
	Ripple carry adder:
	4- Bit Parallel Subtractor:
	Binary-Adder Subtractor:
	The Look-Ahead –Carry Adder:
	2’s complement Addition and Subtraction using Parallel Adders:
	Serial Adder:
	Difference between Serial and Parallel Adders:
	BCD Adder:
	EXCESS-3(XS-3) ADDER:
	Excess-3 (XS-3) Subtractor:
	Binary Multipliers:
	Code converters:
	Design of a 4-bit binary to gray code converter:
	Design of a 4-bit BCD to XS-3 code converter:
	Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code Input:
	Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:
	1. Magnitude Comparator:
	4-Bit Magnitude Comparator:
	Octal to Binary Encoder:
	Tristate bus system:
	Digital-to-Analogue Converters
	Introduction:
	RANDOM-ACCESS MEMORY
	Block Diagram of a memory unit
	Contents of a 1024 * 16 memory
	Control Inputs to Memory Chip
	Memory Decoding
	Internal Construction
	Memory cell
	Diagram of a 4 * 4 RAM READ ONLY MEMORY:
	ROM block diagram
	Internal logic of a 32: 8 ROM Combinational Circuit Implementation
	Programming the ROM according to Table given above
	Combinational PLDs
	Basic configuration of three PLDs
	PLA with three inputs, four product terms, and two outputs
	PAL
	PAL Programming Table
	Sequential circuits
	Comparison between combinational and sequential circuits
	Synchronous and Asynchronous Operation:
	Fundamental Mode Circuits assumes that:
	A pulse mode circuit assumes that:
	Latches and flip-flops
	Figure: basic symbol of flipflop
	SR latch:
	NAND latch
	NOR latch
	RS Flip-flop:
	Figure: RS Flip-flop
	Operation:
	Edge triggered RS flip-flop:
	Figure: Edge triggered RS flip-flop
	Edge Triggered D Flip-flop:
	Figure: JK flip-flop
	Operation: (1)
	T flip-flop:
	Flip flop operating characteristics:
	Race around Condition
	Applications of flip-flops:
	Excitation Tables:
	Convert a D-FF to a T-FF:
	Convert a RS-FF to a D-FF:
	Convert a RS-FF to a JK-FF:
	Sequential Circuit Design
	Mealy and Moore
	An example to go through the steps
	Generation of a state diagram
	Select a state assignment
	Flip-flop input equations
	The output equation
	Shift registers:
	Buffer register:
	Figure: logic diagram of 4-bit buffer register
	Controlled buffer register:
	Data transmission in shift registers:
	Serial IN, serial OUT, shift right, shift left register:
	Serial-in, parallel-out, shift register:
	Parallel-in, serial-out, shift register:
	Parallel-in, parallel-out, shift register
	Bidirectional shift register:
	Figure: logic diagram of a 4-bit bidirectional shift register Universal shift register:
	Figure: logic diagram 4-bit universal shift register
	Counters:
	Design of Asynchronous counters:
	Design of a Mod-6 asynchronous counter using T FFs:
	Design of a mod-10 asynchronous counter using T-flip-flops:
	Synchronous counters:
	Design of synchronous counters:
	Design of a synchronous 3-bit up-down counter using JK flip-flops:
	Design of a synchronous modulo-6 gray cod counter:
	Design of a synchronous BCD Up-Down counter using FFs:
	Shift register counters:
	FIGURE: logic diagram of 4-bit ring counter using D flip-flops
	Timing diagram:
	Twisted Ring counter (Johnson counter):
	Excitation table
	Serial binary adder:
	Figure: block diagram of serial binary adder
	Step5: state assignment and transition and output table:
	Sequence detector:
	PS I/P NS
	FFS O/P

